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We establish pointwise as well as uniform estimates for Lebesgue functions
associated with a large class of Erdds weights on the real line. An Erdds weight is
of the form W :=exp(—Q), where Q: R — R is even and is of faster than polyno-
mial growth at infinity. The archetypal examples are

Wi a(x) :=exp(— Q4 (x)), ()

where Qg ,(x) :=exp; (|x[*), «>1, k>1. Here exp, :=exp(exp(exp(...))) denotes
the kth iterated exponential.

W4, 5(x) :=exp(—Q 4 5(x)), (ii)

where Q, p(x):=exp(log(4+x?))%, B>1 and A>A,. For a carefully chosen
system of nodes y,:={&;, &5, .., &,}, n=1, our result imply in particular, that
the Lebesgue constant |4, (Wi ., xa) |1 vy :=SUPxer [4u(Wi o, x)| (x) satisfies
uniformly for n> Ny, [4,(Wg s 24)L, &) ~l0og n. Moreover, we show that this
choice of nodes is optimal with respect to the zeros of the orthonormal polynomials
generated by W2 Indeed, let U, := {x,,:1<j<n}, n>1, where the x; , are the
zeros of the orthogonal polynomials p,( W?2 -) generated by W2 Then in particular,
we have uniformly for n=N, [|4,(Wy o, Ul &) ~nl/6(]_[j’.°:1 logjn)l/é. Here,
log; :=log(log(log(...))) denotes the jth iterated logarithm. We deduce sharp
theorems of uniform convergence of weighted Lagrange interpolation together with
rates of convergence. In particular, these results apply to W} ,and W, 5.  © 1998
Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we investigate Lebesgue bounds and uniform convergence
of Lagrange interpolation for Erdés weights. We recall that an Erdés
weight has the form

W:=exp(—Q),
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where Q: R — R is even and is of faster than polynomial growth at infinity.
The archetypal examples are

(1) Wi a(x):i=exp(—Qf a(x)), (1.1)

where
Or. o (x) :=expy (|x]%), k=1,a>1.

Here exp, :=exp(exp(exp(...))) denotes the kth iterated exponential.

(i) Wy, p5(x) :=exp(— Q4 p(x)), (1.2)
where

Q.4 5(x) :=exp(log(4 +x?))%,
B>1 and 4 is large enough but fixed.

Throughout, let /: R — R be continuous and satisfy the decay condition,

|llim lfW| (x)=0. (1.3)
We set
ELf 1w o= 0l [(f = P)x) W)l 2am (14)

to be the error of best weighted polynomial approximation to f from %,
n=l.

Here, 2, denotes the class of polynomials of degree <n.

It is well known [9] that

Elflwo—0 as n— oo.
Now let

Xn:z{él’ 62>~~~a én}s }’l?l,

be an arbitrary set of nodes. The Lagrange interpolation polynomial to f
with respect to y, is denoted by L,[ f, W, x,]. Thus, if

Ln(X) € 215 1<j<n,

are the fundamental polynomials of Lagrange interpolation at &;, 1 <j<n,
satisfying

lj,n(%n)(fj,n):(sj,ka 1 <k<n,
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then
LLAW. 0, 1(x)=3 f&.) L .(x)(x)eZ_y. (L5)

j=1

Now write

IWCf =Ll W 2D Lwy

<E, [ f1wo <1 ; H W) S 1 (o)) W1(E)
j=1

LDO(R)>

=E, 1[fTw, oo (14 4, (W, )l L), (1.6)

where [|4,, (W, x,)|l ) 1s called the Lebesgue constant with respect to the
weight W and the set of nodes y,, and 4,(W, x,) is the corresponding
Lebesgue function.

Using (1.6), we see that estimates of the size of the Lebesgue constant
enable one to deduce theorems on uniform convergence of Lagrange inter-
polation. As the subject of weighted Lagrange interpolation is an exten-
sively researched and widely studied subject, we refer the reader to [ 1, 5-7,
10-157.

Now given a weight W: R — (0, 1] as above, we may define orthonormal
polynomials

pn(x)::pn(Wza X):ann+ ) Wlth yn:yn(W2)>0a

satisfying

L Pu(W2 X) po(W2 x) WA(X) dx =0,
We denote the zeros of p, by
— 00 <X g <Xy p< o <Xp <Xy, < 0.
Put
U, ={x;,:1<j<n}, n=l (1.7)

To formulate our results, we need a suitable class of Erdés weights from

[8].
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DerFiNITION 1.1. Let W:=exp(—Q), where Q:R—R is even, con-
tinuous, Q" exists in (0, ), 0¥ >0 in (0, ), j=0,2, 0V >0 in (0, o),
and the function

xQ"(x)
T(x):=1+ (1.8)
O(x)
is increasing in (0, oo) with
lim 7T(x)= oo, T(0*):= lim T(x)>1. (1.9)
X — 00 x—0*t
Moreover, we assume that for some C;>0, 1 < /<3,
T(x)
i<l <G,y x2C 110
S Goem) < : 0
and for every ¢ >0,
T(x)=0((Q(x))), x— 0. (L.11)

Then, we write Weé.

The principle examples of We & are W, , and W, p given by (1.1) and
(1.2), respectively. For more on this subject we refer the reader to [2—4, 8].

To state our results, we need some more notation.

We need the Mhaskar—Rakhmanov—Saff number a, defined as the
positive root of the equation

2! tQ' t)dt
u:fj aiQa)dt (1.12)

o 1—¢

Here, a, exists and is a strictly increasing function of u [8, 9]. Among
its uses is the infinite-finite range inequality

IPW Ly = IPWl ot —a,a1.  PES. (1.13)

Note that a,, depends only on the degree of the polynomial P and not on
P itself.
Now choose y, €[ —a,, a,,] so that

[P W (Yol = 12a Wl L) (1.14)

As W is even, we may assume that y, > 0. We will show later that in fact
yo>0 and is very “close” to a,. Fix y, as above.
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Finally set

6,:=nT(a,)) 2 n=1, (1.15)
and
max{ 1— m—l—Lé,,, ! },
ey Voooa, T(a,) /1—(|x|/a,) + LJ, 16
W (X) 1= x| <a, (1.16)
Ha,), |x|=a,.

Here, L >0 is fixed, but large enough throughout.

For more on these special sequences of functions, we refer the reader to
[5, 8].

Here and throughout, for real sequences A4, and B, # 0,

4,=0(B,), A,~B, and  A,=o(B,)

will mean respectively that there exist constants C;>0, j=1,2, 3, inde-
pendent of n, such that

A, A, .
Big Cl 5 C2 < F < C3, and nlingo

3 =0.

n n n

Similar notation will be used for functions and sequences of functions.

Bounds for Lebesgue Constants and Uniform Convergence of Lagrange
Interpolation for U,,n>1. We begin our investigation with the sequence
of nodes, U,, n>1, defined by (1.7).

We prove:

THEOREM 1.2. Let We&. Then, uniformly for n= N,
1A, (W, U 1y ~ 1T (a,)'°. (1.17)
In particular, given ¢ >0, there exists C> 0 independent of n such that
A, (W, Ul £y < Cnte e,

We deduce:

CorOLLARY 1.3. Let Weé& and r = 1. Then there exists C;>0; j=1, 2,
independent of n and f so that for n= N,
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(@) (f=LLLAW, U D WL &
<CGE,_[f] W, o nl/GT(an)l/6

<G, ., <f, w, ”") nST(a,)". (1.18)
n

Here,
Oy (W 0):= L SUD WAy ) 2ot <ot

+ inf  [[(f = P) Wl (x> e@0) s t>0

Pe?, 4

is the weighted modulus of smoothness of f,

a(t):=inf{au:a;<t}, (1.19)
d5t(x):=’1—|x| 4 T(a(1))"', xeR, (1.20)
a(1)

and for an interval J and h> 0,

i(’.)(—l)ff(wrzh—m), x+7ey

AT(fox, J) =4 iZo \i

0, otherwise

(b)  Moreover, if f satisfies f W e L_ (R), then given ¢ >0,

(= LLf. W, U,T) Wiy < Cs <“> WST(a)Ve (121)
n
< Cynlfore—r, (122)

Here Cy> 0 is independent of n.
Thus we can ensure uniform convergence for every r > 1.

Remark. 1t is instructive at this point to recall that for Q= Q, , of

(1.1),

k
T(a,)=|] log,n.
j=1
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Moreover, in general, given ¢>0 and n> 1,

(See also (2.7)). We thus observe that we may dispense with the 7(a, )¢
on the right hand side of (1.17) by inserting an extra weighting factor into
the left hand side of (1.17) in the following sense.

Under the hypotheses of Theorem 1.2, we have uniformly for n>= N,

An(Wa Un) <’1_|X|
a

n

~n'e, (1.23)

Lo(R)

¥ T(a»*)w

This follows easily using the proof of (1.17) and (2.11).

A Better Behaving Lebesgue Function. We observe that although (1.21)
yields uniform convergence for every r>1, we can substantially improve
our results, by choosing our interpolation points more carefully. The idea,
first exploited by J. Szabados [14] for Freud weights on the real line, is
motivated by (1.13). Recalling the definition of y, in (1.14) and U, in (1.7),
we set

Vn+2::{*y0aJ’0}UUn» n=l1,
and prove:
THEOREM 1.4. Let We &. Then uniformly for n>= N,
14,2 (W, Vo) £pr) ~log 1. (1.24)
Thus, by adding two completely new points of interpolation, we can
achieve the much better order log n in comparison to the order (n7(a,))"®

that we obtained merely using the zeros of p,,.
We deduce,

COROLLARY 1.5. Let Weé& and r=1. Then there exists C;>0, j=1,2
independent of f and n so that for n= N,

(@) [(f =Lyl s W, V,i2]) WHLOO(R)
<CLELf 1w, logn

<G, ., <f, w, ”;) log n. (1.25)



242 S. B. DAMELIN
(b)  Moreover, if f satisfies f”WeL_ (R) then, given ¢ >0,

I(f — LS. W. U])W|Lw(R)\c3< >10gn (126)
< Cin~"**logn. (1.27)

Here Cy>0 is independent of n.

Remark. A natural question arises as to whether (1.24) holds (in a
lower bound sense) for any system of nodes, at least for some Erdds
weight. This and related questions will be considered in a future paper.

Pointwise Estimates for A,(W, U,). We present pointwise estimates for
A,(W, U,). We emphasize our results and briefly sketch their proofs in
Section 5 as the arguments are straightforward, but rather lengthy.

THEOREM 1.6. Let Weé.

(a) Then for n=N,, there exists C>0 such that for |x|<
+(L/2)9,)

A, (W, U)(x)<C[1 +/a, |p,W|(x)

Y ||

(1.28)

Moreover, we have uniformly for |x| <x, , and n,

A, (W, U)x)~1+/a, |p,W| (x

[(1_|X|+L5 >1/410g <n 1—(|x|/a,,)+L(5,,)>+1H. (1.29)
a, ¥, (x)

(b) Uniformly for n= Ny and a,(1+(L/2)d,)<|x| <2a,,

A, (W, U)(X) ~Sa, |pa W (x)[1+ 0147, (1.30)

(c) Uniformly for n= Ny and |x| = 2a,,

An(Wa Un)(x)N |X|

[1+6447. (1.31)

Structure of This Paper. We close this section with some notation and
remarks concerning the structure of this paper. Throughout, C, C,,
C,--- >0 will denote constants independent of n, x and Pe Z,. The same
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symbol does not necessarily denote the same constant in different occurren-
ces. We write C# C(L) to indicate that C is independent of L.

This paper is organized as follows.

In Section 2, we present our technical lemmas. In Section 3, we present
the proofs of our upper bounds for (1.17) and (1.24). In Section 4, we prove
Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5. Finally in Section 5, we
sketch briefly the main ideas in the proof of Theorem 1.6.

2. TECHNICAL LEMMAS

LEMMA 2.1. Let Weé& and set
xO,n:le,n(1+L5n) and Xnn+1:= —Xo,n-

(a) There exists A>0 independent of n and L such that for n>1,

‘xl’"—l‘<A5n. (2.1)

(b)  Uniformly for n=2 and 0< j<n—1,
an
Xjon —Xj+1,n N; Syn(xj,n)~ (22)

(c) Uniformly forn=2 and 0<j<n—1,

1—|Xj’n|+L6n~1 | +1n| L(S

n (2.3)
a, a,
and
V(5 0) ~ WX 1,m)- (2.4)

(d) Fornz=1,

sup [p, W[ (x) |1 —=— . (2.5)
xeR n

and
sup | p, W1 (x) ~n"*T(a,)"® a, 2. (2.6)

xeR
Proof. This is part of Lemma 2.1 of [5]. ||
Now fix 4 in (2.1).
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LEMMA 2.2. Let Weé.

(a) Givene>0and n=1, there exists C> 0 independent of n such that

a,< Cn?, T(a,) < Cn®, and 0,<CT(a,)"" (2.7)

(b) Given 0 <a < f8, we have uniformly for n= C,

T(azxn) ~ T(aﬂn) (28)

(c) Uniformly for ue(C, oo) and ve[u/2, 2u], we have

‘“‘—1‘~‘”—1‘ T(a,)~". (2.9)
a v

v

(d) Given meN and n= N,, we have for every {P;}7_, €2,

(2.10)

HWZ|Pk| =WZ|Pk|
k=1 k=1

Ly (R) Lyl —a,, a,]
Moreover, given r > 1, there exists C = C(r) >0 independent of n, m, and
P, such that

|x| . 1/6 m
Wil ——+T(a,) > Pyl
ay k=1 Loo(R)
<C W 1 m T . 1/6 m
< S Ty ) Y 1P (2.11)
n k=1 Lol =@, (4410 (ns1)]

Proof. Parts (a)—(c) are found in Lemma 2.3 of [5], (2.10) follows as
in Lemma 1 of [14], and then (2.11) follows using (2.10) and the method
of Lemma 3.3 in [3]. ||

Our next lemma establishes how “close” y, is to a,.
LEMMA 2.3. Let Weé&, n=N,, and y, be as in (1.14). Then, we have
a,(1—Bd,)<yo<a, (2.12)

for some B> 0 independent of n and L.
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Proof. By (2.5), (2.6), and the definition of J,, (see (1.15)), there exist
C;>0, j=1,2 such that

Cra, "*(nT(a,)"* <|pa(yo)l W(yo)

/
<C2an1/2min{‘1—y° ,5,11/4}. (2.13)
an
Then, this gives
max{‘l—yo,én}gcgﬁn. (2.14)
an

Now by the definition of y,, we have clearly that y,<a,. Moreover, if
yo=a,(1—9,) then (2.12) is satisfied with B=1. Suppose then, that

0<yo<a,(1—=90,).
Then (2.14) becomes

<1—y°><c45,,
a

which again implies (2.12) with B=C,. |
Now, fix B in (2.12).

LEMMA 2.4. Let Weé.

(a) Uniformly for n=1, 1<j<n, and xeR,

32 ' 1/4
(U~ W(xj’n)<l—|);/’”|+L5n> % (2.15)
n J.n

(b) There exists C>0 such that uniformly for n=1, 1 <j<n, and
x€R,

|1 (U)(x) W) W (x;,) < C. (2.16)

(c) Uniformly forn=1and 1< j<n,

a3/2 X, 1/2
n %(x,,n)<1—'f’"'+wn> L] (x,)

n n

|X~ | 1/4
~al? | p, W) (x;,) ~ <1—”"+L5,,> . (2.17)

n
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(d) Fornz=l,1<j<n, and |x|<a,, there exists C>0 such that

" Ix, | 127 —1/2
a0l W0 < € | 2,00 2,0 (1222 10, )|

n

XX —=x; . (2.18)

Proof. Parts (a), (b), and (c¢) are (2.13), (2.14),and (2.11) resp. in [5].
Part (d) is (10.28) in [8]. |

LemMA 25. Let We& and let 1,1, (Vi) and 1, 5, >(V,.,) be
respectively the fundamental polynomials of degree <n+1 at the points y,
and — yo. Then there exists C>0 such for all xeR.

it ma2 (Va2 (X) W(x) W () < C (2.19)
and
L2, ma2 (Vg 2)| (x) W(x) W= po) < C. (2.20)
Proof. We prove (2.19). Relation (2.20) is similar. First observe that

_Pa(X)(yotx)

Lystns2(Vig2)(x)= e, (2.21)
Theea i 2VoPn(¥0) !

and satisfies
ln+1,n+2(Vn+2)(yO)=13 (222)
Livini2(Vaio)(x;,)=0, 1<j<n (2.23)

and

ln+1,n+2( Vii2)(=yo)=0.

Observe that by (2.10), we may assume that |x| <a,, ;. Then by (2.6),
(2.9), the definition of y,, (2.12), and (2.21),

it ns2(Vag2) W(x) W= (yo)l

W(x) [pn(X)] |0+ x|
20 |Pu(¥0)l W(yo)

an—1/2nl/6T(an)l/6 a, —c I
(1—B0,)a, n"eT(a,) o~ 2"

<G 2a

We next need a lemma which gives an estimate of the distance between
Yo and |x; |, I <j<n



LEBESGUE FUNCTIONS FOR ERDOS WEIGHTS 247

LEMMA 2.6. Let We&. Then for n = N, and uniformly for 1 < j<n, we
have

_ |xj,n|

n

|yo—+x¢nu'van<]1 -+Lan>. (224)

Proof. We begin with our lower bound. We consider two cases:

Case 1. |x;,|>a,(1—2LJ,). Note that here

gl s <aps
an
Moreover (2.1) implies
|xj, nl
1 ——2~|+Ls,<3LJ, (2.25)
an

if L is large enough.
Next observe that by (2.12) and the definition of ¥, (see (1.16)), we have
that

V2(vo) = (T(a,)' 0,/ B+ L))~ (2.26)

Now as Q and |p, | are both even functions, the definition of ¥, (1.16),
(2.6), (2.18), (2.25), and (2.26) yield

|y0_|xj,n||>cl anén

X
>C2an<‘l—|]’"|

n

+15, )

uniformly for 1< j<n.

Case 2. |x;,|<a,(1 —2LJ,). Observe that if L is large enough,

%, ]
o= 1%, 41| > a, <‘1 il

a,

-I—L5,,> —(a,(1+L3d,)—yy). (2.27)

Now by (2.12),

(a,,(1+L5,,)—y0)<2"{1—j’"'+L5,,] (2.28)
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if
|,

L
”"'226,,{3—%} (2.29)
a 2

1

n

But then it is easy to see that |x; ,| <a,(1—2LJ,) implies (2.29) if L is
large enough and so we have (2.28). Inequality (2.27) then becomes

_ |xj,n|

an
o=l 121

+15, )

n

and we have our lower bound for this case as well.
The upper bound is easier. We again distinguish two cases:

Case 1. |x;,|<a,. Here, if L is large enough, we have by (2.12),
|y0_ |xj,n| | <Lanén—}_an<1 _|xj!n|>

an
X
:an<’1_|;n|
n

Case 2. a,<|x;,|<a,(l+AJ,). Here if L is large enough, we have by
(2.1) and (2.12),

+15, ).

|y0_|xj,n||<Ban5n+xl,n_an

_ |xj,n|

a,

<an5n(B+A)<anH1

+1d, .

The lemma is proved. ||
Let us put
Ax;

Gon =Xjn T Xj41,n> 1<]<7’l

We prove:

LemMmA 2.7. Let Weé, n=N,, r>1, and |x|<a,,. Then there exists
C;>0, j=1,2 such that for 1< j<n,
(a) Wi(x)!

J>

n( Un)(x) Wil (xj, n)

' 1/4 —14 4y
<C1<‘1_|x],n| +L5n> (’1_IXI +L5n> Xin__
ay a, |x_xj,n|

(2.30)
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(b)) W) L 2 (Vi) () WX )

—3/4
+L5n> (‘1_""
a

n

|xj,n|

3/4 Ax.,
+1LJ, > _ZNim
a

|x7xj,n|.

(2.31)

<C1<1—

n

Proof. We begin first with (2.30). First note that (2.5) and (2.6) show
that uniformly for » and x,

o |xj,n|

—1/4
1pa()] W(x) < Cras (‘1 +L5n> o)

a,

Then by (2.32),
W(x) [ (U)(x) WX, )
_ W) [pa () W (x,,0)
|pn ()| | =2,
a, (11 = (Ix/an)| + L8,) ~ " W1 (x;,)

|20 (x| 1 =2

1/4
+5,) (-2
an

by (2.2) and (2.17). So we have (2.30).
We now proceed with (2.31).
First observe that for 1 < j<n,

<,

_ |xj,n|

a,

—1/4 AX
o)
|x_xj,n|

<C2<’1

2 .2
L2 (Vg 2)(x) = (”) Lo (U)(x). (233)

Yo~ Xjn
Next, we claim that

| yo—x]| <C3an<‘1—|X|
a

n

+L5n>. (2.34)

We consider two cases:

Case 1. |x|<a,. Here much as in the proof of Lemma 2.6,
X

|y0_ |x| | <Ban 5n+an <1 _||>

an

| x|

<C3an<‘l

ay

+L5, )

if L is large enough.
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Case 2. a,<|x|<a,,. Here, using (2.9),
|X| _an<am_an
<Cya,T(a,)""
|x]

<C5an<‘l -

a,

)

|yo—IxlI <la,— yol+la,— |xl|

so that

<C6an<‘l—|x|

a,

+15,

so (2.34) is established. Then (2.24), (2.30), (2.33), and (2.34) yield
(2.31). 1
3. THE PROOFS OF OUR UPPER BOUNDS
In this section we establish our upper bounds for (1.17) and (1.24).
Throughout we assume that We &, xeR is fixed, and x,, , is that zero
of p, closest to x.

We need two lemmas

LeEMMA 3.1.  There exist M and 6 >0 with the following properties:
(a) If |x[€[0,a,(1+(L/2)0,)] then

. A . Ma,,
() (G =k <2} £{ sl —l <2 w0 ()
(i) | Xeornl SO Z W, (), k=0, 1.
- n

Ma,
(i) ¥ = X 3,0 >— = ¥ (). (3.2)

(b) If |x[ € [a,(1+(L/2)0,), »),

M.
X —x; > na" ¥ (x) (3.3)

forall 1 <j<n.
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Proof. Suppose first that xe[0,a,(l+(L/2)d,)]. Observe that if
te[ X1, 0> X; .1, 1 <j<n, we have

jon L

1 _(|xj,n|/an) +L5n

N

o 10,

‘ X
1 _(|xj,n|/an) + L(sn

r
an

gi Xin—Xit1,n < Cl[/n(xj,n) <l
a, |1 —(|x; ,l/a,) +Lé,| n(L—A)J, 2
(3.4)
by (1.16), (2.1), and (2.2) if L is large enough.
We conclude using (1.16) and (3.4) that
V. (1)~ ¥,(x;,) uniformly for j, n and LELX; 11, n» Xjnl
(3.5)

Now by definition of xy ,, we must have X € [Xgu 1,05 Xi(x),n] OF
X € [ Xp(x), n» Xk(xy—1,»] at least when x < x;,. Using (2.3) and (2.4)
if necessary, we may assume without loss of generality that xe

[xk(x)+ 1,n> xk(x), n]‘
Then by (2.2) and (3.5),

|x_xk(x)i2,n| < |xk(x)72,n_xk(x)+2,n|

a
< C ;”l yIn(xk(x),n)

~Y (). (3.6)
n

Using (3.6) and (2.2) we see that it is possible to choose M such that
(3.1) holds at least when x <x, ,. Suppose x > x, ,. We may then suppose
that L is chosen large enough such that x; ,>a,(1—(L/4)J,) and then

L L
[X — X3, ,] <a,,<1 +25n>—an<1—45n>

~dy, 5}1 Nal YIn(x)
n

using (1.15) and (1.16).
Thus also in this case, it is possible to choose M such that (3.1) holds.
Parts (i1) and (iii) of the lemma then follow similarly. [

Now fix M and ¢ in Lemma 3.1 and put

Jn::[xn,n9xl,n]\[xk(x)+2)xk(x)—2] (3.7)
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if x| €[0, a,(1+(L/2)d,)] and
Jn::[xn,n’xl,n] (38)

if |x|ela,(1+(L/2)d,, ).
We modify the definition in (3.7) accordingly if |x| > x,_,.
We have the following estimate.

Lemma 3.2, Uniformly for 1 < j<n and n=N,,

O(a}l™), O<a<l

“ 4Ax;,, ) O(logn), o=

Z a—1
n
0<anavn(x)> ezl

J# Tk S 2, k)~ 21
Proof. First note that if |x| <a,(1+(L/2)d,), we have uniformly for
n=Nyand 1< j<n,

Ix—tl~Ix=x,0 telXjpin X ] JELk(X) +2,k(x)=2].  (3.10)

This follows much as in [3] using Lemma 3.1(a) and (2.2) since,

= (3.9)
|x_xj,n|

x—t _1‘ t—Xx; ,
X=X, X — x],,,
X;p—X;
<|ZnTNrlal o
X=X,
and similarly we can bound
X—X;,
x—1t

Then, from (2.2) and the definition of J, in (3.7), we obtain

i Ax; , _0 f dt
|x n|“ |71l < a,(1+ 45,) |x_[|°‘
ted,

=1
1¢[k(X)+2 k(x)—2]

O(a}™), O<a<l1

O(log n), a=1

0 <”>“—1, a>1
a,¥,(x)

The case for |x| >a,(1+(L/2)d,) is similar but easier. ||
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We may now proceed with the proofs of our upper bounds. We begin
with:

Proof of the Upper Bound in (1.17). From (2.30) we have for 1 <j<n,
W(X) l],n(Un)(x) W_l(xj,n)

<C <|1_(|xj,n|/an)|+L(5n>1/4 ij,n
S U= (Ixl/a,)| + Lo, X —x;0]

Thus, by (1.6) and using the above, we have

A, (W, U,)(x) =

J

W) 1L W (U)W ()

1

I M s

< 2 W) 11w (U0 W (x5 0)
jelk(x)+2, k(x)—2]
i C Y (Il —(1x;,l/a,)| +L5n>”“
1
JFE[k(x) +2, k(x)—2] |1 —(|x|/a,)| + Lo,
) Min_ (3.11)
|x_xj,n|

First observe that we may write

11— (1 nl/an)| + Loy _ X — %]

< . 3.12
T—(xlan + 20, ~ Yo (i=(say +Ls,) 12

Next we observe that using (2.10), we may assume without loss of gener-
ality that |x| <a,,. Then (3.12) becomes using the definition of §,, (see (1.15))

|1_(|x‘,n|/an)|+L5n 1/4 n1/6T(an)l/6|x_X~’n|l/4
< |1_(|§C|/a )+ Lo =0()+0 A . . (3.13)

Thus using (2.16), (3.9), and (3.13), we now rewrite (3.11) as

An(W7 Un)(x)<c2 Z 1

Je[h(x)+2, k(x)—2]

1/6 1/6

+0< Z n/T(an)/ ij,n>
_ 4 3/a

J

k() +2, k(x)—21 %n

Ax;
+0< Y ——hr
& [k(x) + 2, k(x)— 2] lx =X

= 0(1) + O(log n) + O(n"*T(a,) ")
= 0(n"°T(a,)"°) (3.14)

|x_xj,n|
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and so we have taking sup’s,

1AL (W, U 2, &)= O(n'°T(a,)") (3.15)
as required. ||

We now present,

Proof of Our Upper Bound in (1.24). Firstly, from (2.31) we have for
1<j<n,

W) 2 (Vig2) () W1 (x

j,n)

1—(|x, Lé,\3* Ax,
<, <| (|xj,n|/an)| + n> Xjn _ (3.16)
1 —(Ixl/a,)| + L3, [x =X
Thus by (1.6), (2.19), (2.20), and (3.16), we have
An+2(W> Vn+2)(x)
<0(1)+ Z W()C) |lj,n+2(Vn+2)(x)| W_l(xj,n)
je [k(x){i—zz,lk(x) —2]
ve, 5 (Al +L5,,>—3/“ A%,
P |1 —(|x|/a,)| + Lo, 1% — X |
J[k(x)+2, k(x)—2]
= O(l)—i—z (x)+2(x), (3.17)
1 2
where
Y (x):= Y W(X) 1L (Vi) () W (x; )
! Je kxS 20 k() — 2]
and
“ |1_(|xn|/an)|+l‘5n I Ax'n
swe, v (G i
5 =1 1 —(|x|/a,)| + Lo, I — X

J & [k(x) +2, k(x)—2]

We observe that using (2.11), we may assume without loss of generality
that |x| <a,,,. We begin with the estimation of >, (x).
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Note, that by (2.24), (2.33), and (2.34),

n 2 2
EE ‘?’x;

1 Yo—Xjn
J¢[k(>€) 2 k(x)—2]

B " 11— (Ixl/ay)| + L3,
‘0< 2 <U—U&AMM+L%>

Jjelk(x)+2, k(x)—2]

< W) 1, o (U)W (x ») (3.18)

W(x) |l],n(Un)(x)| W_l(xj,n)

Next, using (2.1), (2.2), and (2.4), it is easy to see that if L is large
enough, we have uniformly for x and je [k(x)+ 2, k(x)—2],

< |1 —(Ixl/a,)| + Ld, >~1
|1 _(|xj,n|/an)| +L5n

so that

Z«w=0< i W@H&AUJWNW’%n»>

1
]e[k(x) 2 k(x)—2]

= 0(1) (3.19)

by (2.16).
We now turn to the delicate estimation of >, (x).
Much as in (3.12), we observe that for 1 < j<n we have

< |1 —(Ixl/a,)| + Lo, >3/4
11— (lx;,xl/a,)| + Lo,

|X |3/4
<1 3.20
T oy o T L5 (3:20)
Then, using (3.20), we may write
Ax; Ax;
(x)=0< —Lr 4 LR >,
; jezs X=X ] jezs ay* |x —x; |V (11 = (Ix;, 4 l/a,)| + Lo,) >

where

S=1{j:1<j<n, jEk(x)+2 k(x)-21},
Z ij,n >
1 |x_xj,n|1/4 (|an_ |xj,n| | —l—anlfén)g/4

jes

= O(logn) + 0<
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by (3.9)

Ax

jun >
|x7xj,n|1/4 (ani |xj,n|)3/4

=0O(logn)+ O < >
Jjes
1), ol Say(1—8,)

Ax;, nnl/zT(an)m)

v —x; " ayt

+0< y (321)
jes
1% nl > a,(1—3,)

Next, using the Geometric and Arithmetic mean inequality and (3.9)
again, we may continue (3.21) as

2. (x)=O(log n)

2

Ax; Ax;
+0< y oo e >+0< y o A )
jes |x_xj,n| jes an_|xj,n|
|xj’n|$an(175n) |xj,n|$an(175n)
a3/4 jes |x—xj,"|l/4
Ix]-yn|>an(l—5n)
=O0(logn)+ 0 < > 1>, (3.22)

jes
|xj’n| >a,(1-9,)

where in the last line we used (1.15), (1.16), (2.1), and (2.2).

Now it remains to observe that the spacing (2.2) and (1.16) imply that
there exist at most a finite number of j such that |x; ,|>a,(1 —6,). Then
(3.22) yields

Y (x)=0O(log n) + O(1) = O(log n). (3.23)

2

Combining (3.23) with (3.19) and taking sup’s yield
14,2 (W, V)l 2, vy = Olog n) (3.24)

as required. ||

4. THE PROOFS OF THEOREMS 1.2 AND 14 AND
COROLLARIES 1.3 AND 1.5

In this section we present the proofs of our lower bounds in (1.17) and
(1.24). We deduce Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5.
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We begin with,
Proof of Our Lower Bound in (1.17). Write

n

Ap(W, U )(x) = W(x) [pp(xX)] X po(y) 7 (X, ) 7 e =, 71 (41)

j=1

In particular, (4.1) becomes using (1.16), (2.9), (2.12), and (2.17),

a2l T(qa,) V6
(1 _(|xj,n|/an) +L5n)_1/4 n

An( Ws Un)(yO) = Cl z —1/2

o<x;,<a,2 9n

>Con=T(a,) Y L (4.2)

0<xjy,,<an/2

Now it remains to observe that the spacing (2.2) and (1.16) imply that
there exist > C;n j such that x; , €[0, a,/2]. Then (4.2) becomes

An( Wa Un)(yO) 2 C4n1/6T(an)l/6
so that
HAn( Wo Un)HLw(R) 2 An( W9 Un)(yO) 2 CSnl/GT(an)1/6a (43)

as required. ||

We now turn to the proof of our lower bound (1.24). Here a choice of
X =y, is not sufficient to achieve our lower bound and we need to proceed
more carefully. Indeed, we will show that the point we need sits “far” away
from a,,.

Proof of Our Lower Bound for (1.24). First we claim that there exists
y e R satisfying |y| <aa,, for some 0 <a <1 and uniformly for n>1,

a?p, W(y)~ 1. (44)

To see this, observe first that if 0 <a <1 is given, then by (1.16), (2.2),
and (2.9), there exits Cyn>j, 1 <j<n+1 such that |x;,,;/€[0,aa,].
Now choose y=y,=x; ,,; for some 1<k<n+1 such that |y |e
[0, aa,]. Then (2.9) and (2.17) give

a1 pa W (y1)~1
and (4.4) is established. Fix y, as above.

We now proceed as follows. Since y; <cy,, for some 0 <c¢ <1, we have
by (1.29), (2.12), (2.33), and (4.4),
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(Y-t
Ay oW, V) > S Wiyy) Wik, ) ( ! >l,~,n<un><y1>

Yo

>Cy Y, Wiy W(x; ) 7 L (U)(0)

= Cod, (W, U,)(y1) = Cy arl,/z [P W (y,)logn

> C,logn.
Thus,

[ 4,42 (W, Vn+2)”LOO(R)>C4 log n (4.5)

and we have proved our lower bound. ||
We may now present:

Proof of Theorem 1.2. This follows immediately from (3.15) and
(4.3). 1

Proof of Corollary 1.3. Relation (1.18) follows from the representation
(1.6), (1.17), and Theorem 1.2 of [4]. Relations (1.21) and (1.22) follow
from (1.18), Corollary 1.7 of [3], and (2.7). |

Proof of Theorem 14. This follows immediately from (3.24) and
45). 1

Proof of Corollary 1.5. Relation (1.25) follows from the representation
(1.6), (1.24), and Theorem 1.2 of [4]. Relations (1.26) and (1.27) follow
from (1.25), Corollary 1.7 of [3], and (2.7). |

5. POINTWISE ESTIMATES OF 4,(W, U,)

In this section, we sketch briefly the proof of Theorem 1.6.
Fix X, Xg(x),n» M, J, and J, as in Section 3.

Step 1. Set

o
S1I:{j1 <j<na |X—Xj’n|< “n Wn(x)}’
n
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and

M
Sy = {j: 1<j<n, |x—x;,|> n ?’n(x)}.
n
Now write
A, (U, W)(x) =3 () + ) () + ) (x)
Jje s JjES, JjES;

Step 2. Estimation of 3 ;s (x) and 3., (x). First observe that it suf-
fices to estimate the above sums for xe[0, «,(1+(L/2)d,)] for they are
identically zero outside this range of x. Moreover, recall that we may
assume by symmetry that x > 0.

Then the following holds:

Lemma 5.1. Let Weé.
(a) There exists C;=0 such that uniformly for n>=1 and

xe[0,a,(1+(L/2)d,)],

0< Y (x)<Cy. (5.1)

jes;

Moreover, uniformly for n=1 and xe[0, x,_,],

Y (x)~1. (5.2)

Jj€ S

(b) Uniformly for xe[0, a,(1+(L/2)0,)] and n= N,
s\
Y )~/ L1 (0 (1= 25, ) (53)
JES, n

Proof. First note that (2.16) gives

PINE: x) Y 1L (U)X W (x;,)

J€S] JE€S]

<CZ 1<C

JjE S|

for some C; >0 independent of x and » as the above sum is finite.
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For the lower sum, we use the weighted Erdés—Turan inequality (see, for
example, [5])

Lw(U)(X) W) W (x5 0) + L1, a(U)(X) W) W () 21 (54)
valid for n>2, 1 <j<n—1,and xe[X; 4 ,, X; ]

If x<x;, we may assume without loss of generality that xe
[ Xk(x)+1.n> Xk(x).n]- Then (5.4) gives

k(x)+1
Y () =Wx) Y L (U)x) W(x,,) =G,
Jjes J=k(x)

Thus (5.1) and (5.2) follow.
It remains to show (5.3). Here we first observe that by (2.2) we have
uniformly for je S,,

an
;yln(xj,n)~|xj,n_xjil,n|~|x_xj,n . (55)
Then (2.15) and (5.5) easily yield.

/
5 0~ 0 (1- 2025, )
JjES, n

as required. ||

Step 3. Preliminary Estimation of 3., (X).
LeEMMA 5.2. Let Weé.
(a) If |x| <2a,, we have uniformly for x and n= N,,

(1—(ltl/a,) + L3,) "™
|x —1|

Z (x) ~ \/(’Tnpn W(x) fm <a,(1+A45,)

JES; ted,

d..  (5.6)

(b) If |x| <2a,, we have uniformly for x and n= N,

|l| 1/4
1=+ Lé,,> dr.  (5.7)

S (o) N, a0 W) i

|x| | <a,(1+A46,) <
n

JjESy ted,

Proof. We consider the case xe[0, a,(1+(L/2)6,)] and x <x; ,. The
other cases are similar.
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By (2.2) and (2.15),

Y ()~ a,p, Wx) »
je S, y D N (1 —(|x; ,1/a,+ Lo,) "

jel[1, nI\[k(x)+2, k(x)—2] “Xj+1,n |x—xj,n|

(5.8)

Then much as in (3.10), (5.8) readily yields (5.6) for this case. ||
Step 4. Estimation of J =1, o a5, 1cs (1= |tl/a,+L3,)*dr. We

now record the following technical estimate for J:

Lemma 5.3. Let We & and suppose that xe [0, a,(1+(L/2)d,)]. Then
uniformly for x and n>= N,

14 - Lo
J~<1—|X|+L6n> log<n( ';‘,'/Elx; ")>+1. (5.9)

ay

Step 5. Proof of Theorem 1.6. Observe that for |x| <a,(1+(L/2)d,),

1— Lo
lo <n( Ixl/a, + ")> >0 if L islarge enough.
¥, (x)

Then (5.1), (5.2), (5.3), and (5.9) yield the result for this case. Theorem
1.6(b) and (c) are similar but easier. ||
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