The Lebesgue Function and Lebesgue Constant of Lagrange Interpolation for Erdős Weights

S. B. Damelin
Department of Mathematics, University of the Witwatersrand, P. O. Wits 2050, Witwatersrand, South Africa
E-mail: steven@gauss.com.wits.ac.za

Communicated by András Kroó
Received August 23, 1996; accepted in revised form June 4, 1997

We establish pointwise as well as uniform estimates for Lebesgue functions associated with a large class of Erdős weights on the real line. An Erdős weight is of the form $W:=\exp (-Q)$, where $Q: \mathbf{R} \rightarrow \mathbf{R}$ is even and is of faster than polynomial growth at infinity. The archetypal examples are

$$
\begin{equation*}
W_{k, \alpha}(x):=\exp \left(-Q_{k, \alpha}(x)\right), \tag{i}
\end{equation*}
$$

where $Q_{k, \alpha}(x):=\exp _{k}\left(|x|^{\alpha}\right), \alpha>1, k \geqslant 1$. Here $\exp _{k}:=\exp (\exp (\exp (\ldots)))$ denotes the k th iterated exponential.

$$
\begin{equation*}
W_{A, B}(x):=\exp \left(-Q_{A, B}(x)\right), \tag{ii}
\end{equation*}
$$

where $Q_{A, B}(x):=\exp \left(\log \left(A+x^{2}\right)\right)^{B}, B>1$ and $A>A_{0}$. For a carefully chosen system of nodes $\chi_{n}:=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}, n \geqslant 1$, our result imply in particular, that the Lebesgue constant $\left\|\Lambda_{n}\left(W_{k, \alpha}, \chi_{n}\right)\right\|_{L_{\infty}(\mathbf{R})}:=\sup _{x \in \mathbf{R}}\left|\Lambda_{n}\left(W_{k, \alpha}, \chi_{n}\right)\right|(x)$ satisfies uniformly for $n \geqslant N_{0},\left\|\Lambda_{n}\left(W_{k, \alpha}, \chi_{n}\right)\right\|_{L_{\infty}(\mathbf{R})} \sim \log n$. Moreover, we show that this choice of nodes is optimal with respect to the zeros of the orthonormal polynomials generated by W^{2}. Indeed, let $U_{n}:=\left\{x_{j, n}: 1 \leqslant j \leqslant n\right\}, n \geqslant 1$, where the $x_{k, n}$ are the zeros of the orthogonal polynomials $p_{n}\left(W^{2}, \cdot\right)$ generated by W^{2}. Then in particular, we have uniformly for $n \geqslant N,\left\|\Lambda_{n}\left(W_{k, \alpha}, U_{n}\right)\right\|_{L_{\infty}(\mathbf{R})} \sim n^{1 / 6}\left(\prod_{j=1}^{k} \log _{j} n\right)^{1 / 6}$. Here, $\log _{j}:=\log (\log (\log (\ldots)))$ denotes the j th iterated logarithm. We deduce sharp theorems of uniform convergence of weighted Lagrange interpolation together with rates of convergence. In particular, these results apply to $W_{k, \alpha}$ and $W_{A, B}$. © 1998 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we investigate Lebesgue bounds and uniform convergence of Lagrange interpolation for Erdős weights. We recall that an Erdős weight has the form

$$
W:=\exp (-Q)
$$

where $Q: \mathbf{R} \rightarrow \mathbf{R}$ is even and is of faster than polynomial growth at infinity. The archetypal examples are

$$
\begin{equation*}
\text { (i) } \quad W_{k, \alpha}(x):=\exp \left(-Q_{k, \alpha}(x)\right), \tag{1.1}
\end{equation*}
$$

where

$$
Q_{k, \alpha}(x):=\exp _{k}\left(|x|^{\alpha}\right), \quad k \geqslant 1, \alpha>1 .
$$

Here $\exp _{k}:=\exp (\exp (\exp (\ldots)))$ denotes the k th iterated exponential.

$$
\begin{equation*}
\text { (ii) } \quad W_{A, \beta}(x):=\exp \left(-Q_{A, B}(x)\right), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{A, B}(x):=\exp \left(\log \left(A+x^{2}\right)\right)^{B} \\
& B \geqslant 1 \text { and } A \text { is large enough but fixed. }
\end{aligned}
$$

Throughout, let $f: \mathbf{R} \rightarrow \mathbf{R}$ be continuous and satisfy the decay condition,

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|f W|(x)=0 \tag{1.3}
\end{equation*}
$$

We set

$$
\begin{equation*}
E_{n}[f]_{W, \infty}:=\inf _{P \in \mathscr{P}_{n}}\|(f-P)(x) W(x)\|_{L_{\infty}(\mathbf{R})} \tag{1.4}
\end{equation*}
$$

to be the error of best weighted polynomial approximation to f from \mathscr{P}_{n}, $n \geqslant 1$.

Here, \mathscr{P}_{n} denotes the class of polynomials of degree $\leqslant n$.
It is well known [9] that

$$
E_{n}[f]_{W, \infty} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Now let

$$
\chi_{n}:=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}, \quad n \geqslant 1
$$

be an arbitrary set of nodes. The Lagrange interpolation polynomial to f with respect to χ_{n} is denoted by $L_{n}\left[f, W, \chi_{n}\right]$. Thus, if

$$
l_{j, n}\left(\chi_{n}\right) \in \mathscr{P}_{n-1}, \quad 1 \leqslant j \leqslant n
$$

are the fundamental polynomials of Lagrange interpolation at $\xi_{j}, 1 \leqslant j \leqslant n$, satisfying

$$
l_{j, n}\left(\chi_{n}\right)\left(\xi_{j, n}\right)=\delta_{j, k}, \quad 1 \leqslant k \leqslant n,
$$

then

$$
\begin{equation*}
L_{n}\left[f, W, \chi_{n}\right](x)=\sum_{j=1}^{n} f\left(\xi_{j, n}\right) l_{j, n}\left(\chi_{n}\right)(x) \in \mathscr{P}_{n-1} \tag{1.5}
\end{equation*}
$$

Now write

$$
\begin{align*}
& \left\|W\left(f-L_{n}\left[f, W, \chi_{n}\right]\right)\right\|_{L_{\infty}(\mathbf{R})} \\
& \quad \leqslant E_{n-1}[f]_{W, \infty}\left(1+\left\|W(x) \sum_{j=1}^{n}\left|l_{j, n}\left(\chi_{n}\right)(x)\right| W^{-1}\left(\xi_{j}\right)\right\|_{L_{\infty}(\mathbf{R})}\right) \\
& \quad=E_{n-1}[f]_{W, \infty}\left(1+\left\|\Lambda_{n}\left(W, \chi_{n}\right)\right\|_{L_{\infty}(\mathbf{R})}\right) \tag{1.6}
\end{align*}
$$

where $\left\|\Lambda_{n}\left(W, \chi_{n}\right)\right\|_{L_{\infty}(\mathbf{R})}$ is called the Lebesgue constant with respect to the weight W and the set of nodes χ_{n}, and $\Lambda_{n}\left(W, \chi_{n}\right)$ is the corresponding Lebesgue function.

Using (1.6), we see that estimates of the size of the Lebesgue constant enable one to deduce theorems on uniform convergence of Lagrange interpolation. As the subject of weighted Lagrange interpolation is an extensively researched and widely studied subject, we refer the reader to $[1,5-7$, 10-15].

Now given a weight $W: \mathbf{R} \rightarrow(0,1]$ as above, we may define orthonormal polynomials

$$
p_{n}(x):=p_{n}\left(W^{2}, x\right)=\gamma_{n} x^{n}+\cdots, \quad \text { with } \quad \gamma_{n}=\gamma_{n}\left(W^{2}\right)>0
$$

satisfying

$$
\int_{\mathbf{R}} p_{n}\left(W^{2}, x\right) p_{m}\left(W^{2}, x\right) W^{2}(x) d x=\delta_{m n}
$$

We denote the zeros of p_{n} by

$$
-\infty<x_{n, n}<x_{n-1, n}<\cdots<x_{2, n}<x_{1, n}<\infty
$$

Put

$$
\begin{equation*}
U_{n}:=\left\{x_{j, n}: 1 \leqslant j \leqslant n\right\}, \quad n \geqslant 1 \tag{1.7}
\end{equation*}
$$

To formulate our results, we need a suitable class of Erdős weights from [8].

Definition 1.1. Let $W:=\exp (-Q)$, where $Q: \mathbf{R} \rightarrow \mathbf{R}$ is even, continuous, $Q^{\prime \prime}$ exists in $(0, \infty), Q^{(j)} \geqslant 0$ in $(0, \infty), j=0,2, Q^{(1)}>0$ in $(0, \infty)$, and the function

$$
\begin{equation*}
T(x):=1+\frac{x Q^{\prime \prime}(x)}{Q(x)} \tag{1.8}
\end{equation*}
$$

is increasing in $(0, \infty)$ with

$$
\begin{equation*}
\lim _{x \rightarrow \infty} T(x)=\infty, \quad T\left(0^{+}\right):=\lim _{x \rightarrow 0^{+}} T(x)>1 . \tag{1.9}
\end{equation*}
$$

Moreover, we assume that for some $C_{j}>0,1 \leqslant j \leqslant 3$,

$$
\begin{equation*}
C_{1} \leqslant \frac{T(x)}{\left(x Q^{\prime}(x) / Q(x)\right)} \leqslant C_{2}, \quad x \geqslant C_{3} \tag{1.10}
\end{equation*}
$$

and for every $\varepsilon>0$,

$$
\begin{equation*}
T(x)=O\left((Q(x))^{\varepsilon}\right), \quad x \rightarrow \infty \tag{1.11}
\end{equation*}
$$

Then, we write $W \in \mathscr{E}$.
The principle examples of $W \in \mathscr{E}$ are $W_{k, \alpha}$ and $W_{A, B}$ given by (1.1) and (1.2), respectively. For more on this subject we refer the reader to [2-4, 8].

To state our results, we need some more notation.
We need the Mhaskar-Rakhmanov-Saff number a_{u} defined as the positive root of the equation

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right) d t}{\sqrt{1-t^{2}}}, \quad u>0 \tag{1.12}
\end{equation*}
$$

Here, a_{u} exists and is a strictly increasing function of u [8, 9]. Among its uses is the infinite-finite range inequality

$$
\begin{equation*}
\|P W\|_{L_{\infty}(\mathbf{R})}=\|P W\|_{L_{\infty}\left[-a_{n}, a_{n}\right]}, \quad P \in \mathscr{P}_{n} . \tag{1.13}
\end{equation*}
$$

Note that a_{n} depends only on the degree of the polynomial P and not on P itself.

Now choose $y_{0} \in\left[-a_{n}, a_{n}\right]$ so that

$$
\begin{equation*}
\left|p_{n} W\left(y_{0}\right)\right|=\left\|p_{n} W\right\|_{L_{\infty}(\mathbf{R})} \tag{1.14}
\end{equation*}
$$

As W is even, we may assume that $y_{0} \geqslant 0$. We will show later that in fact $y_{0}>0$ and is very "close" to a_{n}. Fix y_{0} as above.

Finally set

$$
\begin{equation*}
\delta_{n}:=\left(n T\left(a_{n}\right)\right)^{-2 / 3}, \quad n \geqslant 1, \tag{1.15}
\end{equation*}
$$

and

$$
\Psi_{n}(x):=\left\{\begin{array}{l}
\max \left\{\sqrt{1-\frac{|x|}{a_{n}}+L \delta_{n}}, \frac{1}{T\left(a_{n}\right) \sqrt{1-\left(|x| / a_{n}\right)+L \delta_{n}}}\right\} \tag{1.16}\\
|x| \leqslant a_{n} \\
\Psi\left(a_{n}\right), \quad|x| \geqslant a_{n}
\end{array}\right.
$$

Here, $L>0$ is fixed, but large enough throughout.
For more on these special sequences of functions, we refer the reader to [5, 8].

Here and throughout, for real sequences A_{n} and $B_{n} \not \equiv 0$,

$$
A_{n}=O\left(B_{n}\right), \quad A_{n} \sim B_{n}, \quad \text { and } \quad A_{n}=o\left(B_{n}\right)
$$

will mean respectively that there exist constants $C_{j}>0, j=1,2,3$, independent of n, such that

$$
\frac{A_{n}}{B_{n}} \leqslant C_{1}, \quad C_{2} \leqslant \frac{A_{n}}{B_{n}} \leqslant C_{3}, \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|\frac{A_{n}}{B_{n}}\right|=0 .
$$

Similar notation will be used for functions and sequences of functions.
Bounds for Lebesgue Constants and Uniform Convergence of Lagrange Interpolation for $U_{n}, n \geqslant 1$. We begin our investigation with the sequence of nodes, $U_{n}, n \geqslant 1$, defined by (1.7).

We prove:
Theorem 1.2. Let $W \in \mathscr{E}$. Then, uniformly for $n \geqslant N_{0}$,

$$
\begin{equation*}
\left\|\Lambda_{n}\left(W, U_{n}\right)\right\|_{L_{\infty}(\mathbf{R})} \sim n^{1 / 6} T\left(a_{n}\right)^{1 / 6} . \tag{1.17}
\end{equation*}
$$

In particular, given $\varepsilon>0$, there exists $C>0$ independent of n such that

$$
\left\|\Lambda_{n}\left(W, U_{n}\right)\right\|_{L_{\infty}(\mathbf{R})} \leqslant C n^{1 / 6+\varepsilon}
$$

We deduce:
Corollary 1.3. Let $W \in \mathscr{E}$ and $r \geqslant 1$. Then there exists $C_{j}>0 ; j=1,2$, independent of n and f so that for $n \geqslant N_{0}$,

$$
\text { (a) } \begin{align*}
\|(f- & \left.L_{n}\left[f, W, U_{n}\right]\right) W \|_{L_{\infty}(\mathbf{R})} \\
& \leqslant C_{1} E_{n-1}[f]_{W, \infty} n^{1 / 6} T\left(a_{n}\right)^{1 / 6} \\
& \leqslant C_{2} \omega_{r, \infty}\left(f, W, \frac{a_{n}}{n}\right) n^{1 / 6} T\left(a_{n}\right)^{1 / 6} . \tag{1.18}
\end{align*}
$$

Here,

$$
\begin{aligned}
\omega_{r, \infty}(f, W, t):= & {\left[\sup _{0<h \leqslant t}\left\|W \Delta_{h \Phi_{t}^{1 / 2}(x)}^{r}(f)\right\|_{L_{\infty}(|x| \leqslant \sigma(2 t))}\right.} \\
& \left.+\inf _{P \in \mathscr{P}_{r-1}}\|(f-P) W\|_{L_{\infty}(|x| \geqslant \sigma(4 t))}\right], \quad t>0
\end{aligned}
$$

is the weighted modulus of smoothness of f,

$$
\begin{align*}
\sigma(t) & :=\inf \left\{a_{u}: \frac{a_{u}}{u} \leqslant t\right\}, \tag{1.19}\\
\Phi_{t}(x) & :=\left|1-\frac{|x|}{\sigma(t)}\right|+T(\sigma(t))^{-1}, \quad x \in \mathbf{R} \tag{1.20}
\end{align*}
$$

and for an interval J and $h>0$,

$$
\Delta_{h}^{r}(f, x, J):=\left\{\begin{array}{ll}
\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} f\left(x+\frac{r h}{2}-i h\right), & x \pm \frac{r h}{2} \in J \\
0, & \text { otherwise }
\end{array}\right\} .
$$

(b) Moreover, if f satisfies $f^{(r)} W \in L_{\infty}(\mathbf{R})$, then given $\varepsilon>0$,

$$
\begin{align*}
\left\|\left(f-L_{n}\left[f, W, U_{n}\right]\right) W\right\|_{L_{\infty}(\mathbf{R})} & \leqslant C_{3}\left(\frac{a_{n}}{n}\right)^{r} n^{1 / 6} T\left(a_{n}\right)^{1 / 6} \tag{1.21}\\
& \leqslant C_{3} n^{1 / 6+\varepsilon-r} . \tag{1.22}
\end{align*}
$$

Here $C_{3}>0$ is independent of n.
Thus we can ensure uniform convergence for every $r \geqslant 1$.
Remark. It is instructive at this point to recall that for $Q=Q_{k, \alpha}$ of (1.1),

$$
T\left(a_{n}\right)=\prod_{j=1}^{k} \log _{j} n
$$

Moreover, in general, given $\varepsilon>0$ and $n \geqslant 1$,

$$
T\left(a_{n}\right)=O\left(n^{\varepsilon}\right) .
$$

(See also (2.7)). We thus observe that we may dispense with the $T\left(a_{n}\right)^{1 / 6}$ on the right hand side of (1.17) by inserting an extra weighting factor into the left hand side of (1.17) in the following sense.

Under the hypotheses of Theorem 1.2, we have uniformly for $n \geqslant N_{0}$,

$$
\begin{equation*}
\left\|\Lambda_{n}\left(W, U_{n}\right)\left(\left|1-\frac{|x|}{a_{n}}\right|+T\left(a_{n}\right)^{-1}\right)^{1 / 6}\right\|_{L_{\infty}(\mathbf{R})} \sim n^{1 / 6} . \tag{1.23}
\end{equation*}
$$

This follows easily using the proof of (1.17) and (2.11).
A Better Behaving Lebesgue Function. We observe that although (1.21) yields uniform convergence for every $r \geqslant 1$, we can substantially improve our results, by choosing our interpolation points more carefully. The idea, first exploited by J. Szabados [14] for Freud weights on the real line, is motivated by (1.13). Recalling the definition of y_{0} in (1.14) and U_{n} in (1.7), we set

$$
V_{n+2}:=\left\{-y_{0}, y_{0}\right\} \cup U_{n}, \quad n \geqslant 1,
$$

and prove:
Theorem 1.4. Let $W \in \mathscr{E}$. Then uniformly for $n \geqslant N_{0}$,

$$
\begin{equation*}
\left\|\Lambda_{n+2}\left(W, V_{n+2}\right)\right\|_{L_{\infty}(\mathbf{R})} \sim \log n . \tag{1.24}
\end{equation*}
$$

Thus, by adding two completely new points of interpolation, we can achieve the much better order $\log n$ in comparison to the order $\left(n T\left(a_{n}\right)\right)^{1 / 6}$ that we obtained merely using the zeros of p_{n}.

We deduce,

Corollary 1.5. Let $W \in \mathscr{E}$ and $r \geqslant 1$. Then there exists $C_{j}>0, j=1,2$ independent of f and n so that for $n \geqslant N_{0}$,
(a) $\left\|\left(f-L_{n+1}\left[f, W, V_{n+2}\right]\right) W\right\|_{L_{\infty}(\mathbf{R})}$

$$
\begin{align*}
& \leqslant C_{1} E_{n}[f]_{W, \infty} \log n \\
& \leqslant C_{2} \omega_{r, \infty}\left(f, W, \frac{a_{n}}{n}\right) \log n . \tag{1.25}
\end{align*}
$$

(b) Moreover, if f satisfies $f^{(r)} W \in L_{\infty}(\mathbf{R})$ then, given $\varepsilon>0$,

$$
\begin{align*}
& \left\|\left(f-L_{n}\left[f, W, U_{n}\right]\right) W\right\|_{L_{\infty}(\mathbf{R})} \leqslant C_{3}\left(\frac{a_{n}}{n}\right)^{r} \log n \tag{1.26}\\
& \quad \leqslant C_{3} n^{-r+\varepsilon} \log n . \tag{1.27}
\end{align*}
$$

Here $C_{3}>0$ is independent of n.
Remark. A natural question arises as to whether (1.24) holds (in a lower bound sense) for any system of nodes, at least for some Erdős weight. This and related questions will be considered in a future paper.

Pointwise Estimates for $\Lambda_{n}\left(W, U_{n}\right)$. We present pointwise estimates for $\Lambda_{n}\left(W, U_{n}\right)$. We emphasize our results and briefly sketch their proofs in Section 5 as the arguments are straightforward, but rather lengthy.

Theorem 1.6. Let $W \in \mathscr{E}$.
(a) Then for $n \geqslant N_{0}$, there exists $C>0$ such that for $|x| \leqslant$ $a_{n}\left(1+(L / 2) \delta_{n}\right)$,

$$
\begin{align*}
\Lambda_{n}\left(W, U_{n}\right)(x) \leqslant & C\left[1+\sqrt{a_{n}}\left|p_{n} W\right|(x)\right. \\
& \left.\times\left[\left(1-\frac{|x|}{a_{n}}+L \delta_{n}\right)^{1 / 4} \log \left(\frac{n\left(1-\left(|x| / a_{n}\right)+L \delta_{n}\right)}{\Psi_{n}(x)}\right)+1\right]\right] . \tag{1.28}
\end{align*}
$$

Moreover, we have uniformly for $|x| \leqslant x_{1, n}$ and n,

$$
\begin{align*}
& \Lambda_{n}\left(W, U_{n}\right)(x) \sim 1+\sqrt{a_{n}}\left|p_{n} W\right|(x) \\
& \left.\quad \times\left[\left(1-\frac{|x|}{a_{n}}+L \delta_{n}\right)^{1 / 4} \log \left(\frac{n\left(1-\left(|x| / a_{n}\right)+L \delta_{n}\right)}{\Psi_{n}(x)}\right)+1\right]\right] . \tag{1.29}
\end{align*}
$$

(b) Uniformly for $n \geqslant N_{0}$ and $a_{n}\left(1+(L / 2) \delta_{n}\right) \leqslant|x| \leqslant 2 a_{n}$,

$$
\begin{equation*}
\Lambda_{n}\left(W, U_{n}\right)(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left[1+\delta_{n}^{1 / 4}\right] . \tag{1.30}
\end{equation*}
$$

(c) Uniformly for $n \geqslant N_{0}$ and $|x| \geqslant 2 a_{n}$,

$$
\begin{equation*}
\Lambda_{n}\left(W, U_{n}\right)(x) \sim \frac{a_{n}^{3 / 2}\left|p_{n} W\right|(x)}{|x|}\left[1+\delta_{n}^{1 / 4}\right] . \tag{1.31}
\end{equation*}
$$

Structure of This Paper. We close this section with some notation and remarks concerning the structure of this paper. Throughout, C, C_{1}, $C_{2} \cdots>0$ will denote constants independent of n, x and $P \in \mathscr{P}_{n}$. The same
symbol does not necessarily denote the same constant in different occurrences. We write $C \neq C(L)$ to indicate that C is independent of L.

This paper is organized as follows.
In Section 2, we present our technical lemmas. In Section 3, we present the proofs of our upper bounds for (1.17) and (1.24). In Section 4, we prove Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5. Finally in Section 5, we sketch briefly the main ideas in the proof of Theorem 1.6.

2. TECHNICAL LEMMAS

Lemma 2.1. Let $W \in \mathscr{E}$ and set

$$
x_{0, n}:=x_{1, n}\left(1+L \delta_{n}\right) \quad \text { and } \quad x_{n, n+1}:=-x_{0, n} .
$$

(a) There exists $A>0$ independent of n and L such that for $n \geqslant 1$,

$$
\begin{equation*}
\left|\frac{x_{1, n}}{a_{n}}-1\right| \leqslant A \delta_{n} . \tag{2.1}
\end{equation*}
$$

(b) Uniformly for $n \geqslant 2$ and $0 \leqslant j \leqslant n-1$,

$$
\begin{equation*}
x_{j, n}-x_{j+1, n} \sim \frac{a_{n}}{n} \Psi_{n}\left(x_{j, n}\right) . \tag{2.2}
\end{equation*}
$$

(c) Uniformly for $n \geqslant 2$ and $0<j \leqslant n-1$,

$$
\begin{equation*}
1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n} \sim 1-\frac{\left|x_{j+1, n}\right|}{a_{n}}+L \delta_{n} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{n}\left(x_{j, n}\right) \sim \Psi_{n}\left(x_{j+1, n}\right) . \tag{2.4}
\end{equation*}
$$

(d) For $n \geqslant 1$,

$$
\begin{equation*}
\sup _{x \in \mathbf{R}}\left|p_{n} W\right|(x)\left|1-\frac{|x|}{a_{n}}\right|^{1 / 4} \sim a_{n}^{-1 / 2} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in \mathbf{R}}\left|p_{n} W\right|(x) \sim n^{1 / 6} T\left(a_{n}\right)^{1 / 6} a_{n}^{-1 / 2} . \tag{2.6}
\end{equation*}
$$

Proof. This is part of Lemma 2.1 of [5].
Now fix A in (2.1).

Lemma 2.2. Let $W \in \mathscr{E}$.
(a) Given $\varepsilon>0$ and $n \geqslant 1$, there exists $C>0$ independent of n such that

$$
\begin{equation*}
a_{n} \leqslant C n^{\varepsilon}, \quad T\left(a_{n}\right) \leqslant C n^{\varepsilon}, \quad \text { and } \quad \delta_{n} \leqslant C T\left(a_{n}\right)^{-\varepsilon} . \tag{2.7}
\end{equation*}
$$

(b) Given $0<\alpha<\beta$, we have uniformly for $n \geqslant C$,

$$
\begin{equation*}
T\left(a_{\alpha n}\right) \sim T\left(a_{\beta n}\right) . \tag{2.8}
\end{equation*}
$$

(c) Uniformly for $u \in(C, \infty)$ and $v \in[u / 2,2 u]$, we have

$$
\begin{equation*}
\left|\frac{a_{u}}{a_{v}}-1\right| \sim\left|\frac{u}{v}-1\right| T\left(a_{n}\right)^{-1} . \tag{2.9}
\end{equation*}
$$

(d) Given $m \in \mathbf{N}$ and $n \geqslant N_{0}$, we have for every $\left\{P_{k}\right\}_{k=1}^{m} \in \mathscr{P}_{n}$

$$
\begin{equation*}
\left\|W \sum_{k=1}^{m}\left|P_{k}\right|\right\|_{L_{\infty}(\mathbf{R})}=\left\|W \sum_{k=1}^{m}\left|P_{k}\right|\right\|_{L_{\infty}\left[-a_{n}, a_{n}\right]} . \tag{2.10}
\end{equation*}
$$

Moreover, given $r>1$, there exists $C=C(r)>0$ independent of n, m, and P_{k} such that

$$
\begin{align*}
& \left\|W\left(\left|1-\frac{|x|}{a_{n}}\right|+T\left(a_{n}\right)^{-1}\right)^{1 / 6} \sum_{k=1}^{m}\left|P_{k}\right|\right\|_{L_{\infty}(\mathbf{R})} \\
& \quad \leqslant C\left\|W\left(\left|1-\frac{|x|}{a_{n}}\right|+T\left(a_{n}\right)^{-1}\right)^{1 / 6} \sum_{k=1}^{m}\left|P_{k}\right|\right\|_{L_{\infty}\left[-a_{r(n+1)}, a_{r(n+1)}\right]} \tag{2.11}
\end{align*}
$$

Proof. Parts (a)-(c) are found in Lemma 2.3 of [5], (2.10) follows as in Lemma 1 of [14], and then (2.11) follows using (2.10) and the method of Lemma 3.3 in [3].

Our next lemma establishes how "close" y_{0} is to a_{n}.

Lemma 2.3. Let $W \in \mathscr{E}, n \geqslant N_{0}$, and y_{0} be as in (1.14). Then, we have

$$
\begin{equation*}
a_{n}\left(1-B \delta_{n}\right) \leqslant y_{0} \leqslant a_{n} \tag{2.12}
\end{equation*}
$$

for some $B>0$ independent of n and L.

Proof. By (2.5), (2.6), and the definition of δ_{n} (see (1.15)), there exist $C_{j}>0, j=1,2$ such that

$$
\begin{align*}
C_{1} a_{n}^{-1 / 2}\left(n T\left(a_{n}\right)\right)^{1 / 6} & \leqslant\left|p_{n}\left(y_{0}\right)\right| W\left(y_{0}\right) \\
& \leqslant C_{2} a_{n}^{-1 / 2} \min \left\{\left|1-\frac{y_{0}}{a_{n}}\right|^{-1 / 4}, \delta_{n}^{-1 / 4}\right\} . \tag{2.13}
\end{align*}
$$

Then, this gives

$$
\begin{equation*}
\max \left\{\left|1-\frac{y_{0}}{a_{n}}\right|, \delta_{n}\right\} \leqslant C_{3} \delta_{n} . \tag{2.14}
\end{equation*}
$$

Now by the definition of y_{0}, we have clearly that $y_{0} \leqslant a_{n}$. Moreover, if $y_{0} \geqslant a_{n}\left(1-\delta_{n}\right)$ then (2.12) is satisfied with $B=1$. Suppose then, that

$$
0 \leqslant y_{0}<a_{n}\left(1-\delta_{n}\right) .
$$

Then (2.14) becomes

$$
\left(1-\frac{y_{0}}{a_{n}}\right) \leqslant C_{4} \delta_{n}
$$

which again implies (2.12) with $B=C_{4}$.
Now, fix B in (2.12).
Lemma 2.4. Let $W \in \mathscr{E}$.
(a) Uniformly for $n \geqslant 1,1 \leqslant j \leqslant n$, and $x \in \mathbf{R}$,

$$
\begin{equation*}
\left|l_{j, n}\left(U_{n}\right)(x)\right| \sim \frac{a_{n}^{3 / 2}}{n} \Psi_{n} W\left(x_{j, n}\right)\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n}\right)^{1 / 4}\left|\frac{p_{n}(x)}{x-x_{j, n}}\right| . \tag{2.15}
\end{equation*}
$$

(b) There exists $C>0$ such that uniformly for $n \geqslant 1,1 \leqslant j \leqslant n$, and $x \in \mathbf{R}$,

$$
\begin{equation*}
\left|l_{j, n}\left(U_{n}\right)(x) W(x)\right| W^{-1}\left(x_{j, n}\right) \leqslant C . \tag{2.16}
\end{equation*}
$$

(c) Uniformly for $n \geqslant 1$ and $1 \leqslant j \leqslant n$,

$$
\begin{align*}
\frac{a_{n}^{3 / 2}}{n} & \Psi_{n}\left(x_{j, n}\right)\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n}\right)^{1 / 2}\left|p_{n}^{\prime} W\right|\left(x_{j, n}\right) \\
& \sim a_{n}^{1 / 2}\left|p_{n-1} W\right|\left(x_{j, n}\right) \sim\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n}\right)^{1 / 4} . \tag{2.17}
\end{align*}
$$

(d) For $n \geqslant 1,1 \leqslant j \leqslant n$, and $|x| \leqslant a_{n}$, there exists $C>0$ such that

$$
\begin{align*}
\left|p_{n}(x)\right| W(x) \leqslant & C \frac{n}{a_{n}^{3 / 2}}\left[\Psi_{n}(x) \Psi_{n}\left(x_{j, n}\right)\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n}\right)^{1 / 2}\right]^{-1 / 2} \\
& \times\left|x-x_{j, n}\right| \tag{2.18}
\end{align*}
$$

Proof. Parts (a), (b), and (c) are (2.13), (2.14), and (2.11) resp. in [5]. Part (d) is (10.28) in [8].

Lemma 2.5. Let $W \in \mathscr{E}$ and let $l_{n+1, n+2}\left(V_{n+2}\right)$ and $l_{n+2, n+2}\left(V_{n+2}\right)$ be respectively the fundamental polynomials of degree $\leqslant n+1$ at the points y_{0} and $-y_{0}$. Then there exists $C>0$ such for all $x \in \mathbf{R}$.

$$
\begin{equation*}
\left|l_{n+1, n+2}\left(V_{n+2}\right)\right|(x) W(x) W^{-1}\left(y_{0}\right) \leqslant C \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|l_{n+2, n+2}\left(V_{n+2}\right)\right|(x) W(x) W^{-1}\left(-y_{0}\right) \leqslant C \tag{2.20}
\end{equation*}
$$

Proof. We prove (2.19). Relation (2.20) is similar. First observe that

$$
\begin{equation*}
l_{n+1, n+2}\left(V_{n+2}\right)(x)=\frac{p_{n}(x)\left(y_{0}+x\right)}{2 y_{0} p_{n}\left(y_{0}\right)} \in \mathscr{P}_{n+1} \tag{2.21}
\end{equation*}
$$

and satisfies

$$
\begin{align*}
l_{n+1, n+2}\left(V_{n+2}\right)\left(y_{0}\right) & =1, \tag{2.22}\\
l_{n+1, n+2}\left(V_{n+2}\right)\left(x_{j, n}\right) & =0, \quad 1 \leqslant j \leqslant n \tag{2.23}
\end{align*}
$$

and

$$
l_{n+1, n+2}\left(V_{n+2}\right)\left(-y_{0}\right)=0 .
$$

Observe that by (2.10), we may assume that $|x| \leqslant a_{n+1}$. Then by (2.6), (2.9), the definition of $y_{0},(2.12)$, and (2.21),

$$
\begin{aligned}
& \left|l_{n+1, n+2}\left(V_{n+2}\right) W(x) W^{-1}\left(y_{0}\right)\right| \\
& \quad \leqslant C \frac{W(x)\left|p_{n}(x)\right|\left|y_{0}+x\right|}{2 y_{0}\left|p_{n}\left(y_{0}\right)\right| W\left(y_{0}\right)} \\
& \quad \leqslant C_{1} \frac{a_{n}^{-1 / 2} n^{1 / 6} T\left(a_{n}\right)^{1 / 6} a_{n}}{2 a_{n}\left(1-B \delta_{n}\right) a_{n}^{-1 / 2} n^{1 / 6} T\left(a_{n}\right)^{1 / 6}} \leqslant C_{2}
\end{aligned}
$$

We next need a lemma which gives an estimate of the distance between y_{0} and $\left|x_{j, n}\right|, 1 \leqslant j \leqslant n$.

Lemma 2.6. Let $W \in \mathscr{E}$. Then for $n \geqslant N_{0}$ and uniformly for $1 \leqslant j \leqslant n$, we have

$$
\begin{equation*}
\left|y_{0}-\left|x_{j, n}\right|\right| \sim a_{n}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right) \tag{2.24}
\end{equation*}
$$

Proof. We begin with our lower bound. We consider two cases:
Case 1. $\left|x_{j, n}\right| \geqslant a_{n}\left(1-2 L \delta_{n}\right)$. Note that here

$$
1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n} \leqslant 3 L \delta_{n}
$$

Moreover (2.1) implies

$$
\begin{equation*}
\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n} \leqslant 3 L \delta_{n} \tag{2.25}
\end{equation*}
$$

if L is large enough.
Next observe that by (2.12) and the definition of Ψ_{n} (see (1.16)), we have that

$$
\begin{equation*}
\psi_{n}^{1 / 2}\left(y_{0}\right) \geqslant\left(T\left(a_{n}\right)^{1 / 2} \delta_{n}^{1 / 4}(B+L)^{1 / 4}\right)^{-1} \tag{2.26}
\end{equation*}
$$

Now as Q and $\left|p_{n}\right|$ are both even functions, the definition of $\Psi_{n},(1.16)$, (2.6), (2.18), (2.25), and (2.26) yield

$$
\begin{aligned}
\left|y_{0}-\left|x_{j, n}\right|\right| & \geqslant C_{1} a_{n} \delta_{n} \\
& \geqslant C_{2} a_{n}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right)
\end{aligned}
$$

uniformly for $1 \leqslant j \leqslant n$.
Case 2. $\left|x_{j, n}\right| \leqslant a_{n}\left(1-2 L \delta_{n}\right)$. Observe that if L is large enough,

$$
\begin{equation*}
\left|y_{0}-\left|x_{j, n}\right|\right| \geqslant a_{n}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right)-\left(a_{n}\left(1+L \delta_{n}\right)-y_{0}\right) \tag{2.27}
\end{equation*}
$$

Now by (2.12),

$$
\begin{equation*}
\left(a_{n}\left(1+L \delta_{n}\right)-y_{0}\right) \leqslant \frac{a_{n}}{2}\left[1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n}\right] \tag{2.28}
\end{equation*}
$$

if

$$
\begin{equation*}
1-\frac{\left|x_{j, n}\right|}{a_{n}} \geqslant 2 \delta_{n}\left[B+\frac{L}{2}\right] . \tag{2.29}
\end{equation*}
$$

But then it is easy to see that $\left|x_{j_{, n}}\right| \leqslant a_{n}\left(1-2 L \delta_{n}\right)$ implies (2.29) if L is large enough and so we have (2.28). Inequality (2.27) then becomes

$$
\left|y_{0}-\left|x_{j, n}\right|\right| \geqslant \frac{a_{n}}{2}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right)
$$

and we have our lower bound for this case as well.
The upper bound is easier. We again distinguish two cases:
Case 1. $\left|x_{j, n}\right| \leqslant a_{n}$. Here, if L is large enough, we have by (2.12),

$$
\begin{aligned}
\left|y_{0}-\left|x_{j, n}\right|\right| & \leqslant L a_{n} \delta_{n}+a_{n}\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}\right) \\
& =a_{n}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right) .
\end{aligned}
$$

Case 2. $a_{n} \leqslant\left|x_{j, n}\right| \leqslant a_{n}\left(1+A \delta_{n}\right)$. Here if L is large enough, we have by (2.1) and (2.12),

$$
\begin{aligned}
\left|y_{0}-\left|x_{j, n}\right|\right| & \leqslant B a_{n} \delta_{n}+x_{1, n}-a_{n} \\
& \leqslant a_{n} \delta_{n}(B+A) \leqslant a_{n}\left[\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right] .
\end{aligned}
$$

The lemma is proved.
Let us put

$$
\Delta x_{j, n}:=x_{j, n}-x_{j+1, n}, \quad 1 \leqslant j \leqslant n .
$$

We prove:
Lemma 2.7. Let $W \in \mathscr{E}, n \geqslant N_{0}, r>1$, and $|x| \leqslant a_{r n}$. Then there exists $C_{j}>0, j=1,2$ such that for $1 \leqslant j \leqslant n$,
(a) $W(x) l_{j, n}\left(U_{n}\right)(x) W^{-1}\left(x_{j, n}\right)$

$$
\begin{equation*}
\leqslant C_{1}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right)^{1 / 4}\left(\left|1-\frac{|x|}{a_{n}}\right|+L \delta_{n}\right)^{-1 / 4} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|}, \tag{2.30}
\end{equation*}
$$

(b) $W(x) l_{j, n+2}\left(V_{n+2}\right)(x) W^{-1}\left(x_{j, n}\right)$

$$
\begin{equation*}
\leqslant C_{1}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right)^{-3 / 4}\left(\left|1-\frac{|x|}{a_{n}}\right|+L \delta_{n}\right)^{3 / 4} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|} \tag{2.31}
\end{equation*}
$$

Proof. We begin first with (2.30). First note that (2.5) and (2.6) show that uniformly for n and x,

$$
\begin{equation*}
\left|p_{n}(x)\right| W(x) \leqslant C_{1} a_{n}^{-1 / 2}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right)^{-1 / 4} \tag{2.32}
\end{equation*}
$$

Then by (2.32),

$$
\begin{aligned}
W(x) & l_{j, n}\left(U_{n}\right)(x) W^{-1}\left(x_{j, n}\right) \\
& =\frac{W(x)\left|p_{n}(x)\right| W^{-1}\left(x_{j, n}\right)}{\left|p_{n}^{\prime}\left(x_{j, n}\right)\right|\left|x-x_{j, n}\right|} \\
& \leqslant C_{1} \frac{a_{n}^{-1 / 2}\left(\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}\right)^{-1 / 4} W^{-1}\left(x_{j, n}\right)}{\left|p_{n}^{\prime}\left(x_{j, n}\right)\right|\left|x-x_{j, n}\right|} \\
& \leqslant C_{2}\left(\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+L \delta_{n}\right)^{1 / 4}\left(\left|1-\frac{|x|}{a_{n}}\right|+L \delta_{n}\right)^{-1 / 4} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|} .
\end{aligned}
$$

by (2.2) and (2.17). So we have (2.30).
We now proceed with (2.31).
First observe that for $1 \leqslant j \leqslant n$,

$$
\begin{equation*}
l_{j, n+2}\left(V_{n+2}\right)(x)=\left(\frac{y_{0}^{2}-x^{2}}{y_{0}^{2}-x_{j, n}^{2}}\right) l_{j, n}\left(U_{n}\right)(x) . \tag{2.33}
\end{equation*}
$$

Next, we claim that

$$
\begin{equation*}
\left|y_{0}-x\right| \leqslant C_{3} a_{n}\left(\left|1-\frac{|x|}{a_{n}}\right|+L \delta_{n}\right) . \tag{2.34}
\end{equation*}
$$

We consider two cases:
Case 1. $|x| \leqslant a_{n}$. Here much as in the proof of Lemma 2.6,

$$
\begin{aligned}
\left|y_{0}-|x|\right| & \leqslant B a_{n} \delta_{n}+a_{n}\left(1-\frac{|x|}{a_{n}}\right) \\
& \leqslant C_{3} a_{n}\left(\left|1-\frac{|x|}{a_{n}}\right|+L \delta_{n}\right)
\end{aligned}
$$

if L is large enough.

Case 2. $a_{n}<|x| \leqslant a_{r n}$. Here, using (2.9),

$$
\begin{aligned}
|x|-a_{n} & \leqslant a_{r n}-a_{n} \\
& \leqslant C_{4} a_{n} T\left(a_{n}\right)^{-1} \\
& \leqslant C_{5} a_{n}\left(\left|1-\frac{|x|}{a_{n}}\right|\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\left|y_{0}-|x|\right| & \leqslant\left|a_{n}-y_{0}\right|+\left|a_{n}-|x|\right| \\
& \leqslant C_{6} a_{n}\left(\left|1-\frac{|x|}{a_{n}}\right|+L \delta_{n}\right)
\end{aligned}
$$

so (2.34) is established. Then (2.24), (2.30), (2.33), and (2.34) yield (2.31).

3. THE PROOFS OF OUR UPPER BOUNDS

In this section we establish our upper bounds for (1.17) and (1.24). Throughout we assume that $W \in \mathscr{E}, x \in \mathbf{R}$ is fixed, and $x_{k(x), n}$ is that zero of p_{n} closest to x.

We need two lemmas
Lemma 3.1. There exist M and $\delta>0$ with the following properties:
(a) If $|x| \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$ then
(i) $\quad\{j:|j-k(x)| \leqslant 2\} \subseteq\left\{j:\left|x-x_{j, n}\right| \leqslant \frac{M a_{n}}{n} \Psi_{n}(x)\right\}$.
(ii) $\quad\left|x-x_{k(x) \pm k, n}\right| \leqslant \delta \frac{a_{n}}{n} \Psi_{n}(x), \quad k=0,1$.
(iii) $\left|x-x_{k(x) \pm 3, n}\right|>\frac{M a_{n}}{n} \Psi_{n}(x)$.
(b) If $|x| \in\left[a_{n}\left(1+(L / 2) \delta_{n}\right), \infty\right)$,

$$
\begin{equation*}
\left|x-x_{j, n}\right|>\frac{M a_{n}}{n} \Psi_{n}(x) \tag{3.3}
\end{equation*}
$$

for all $1 \leqslant j \leqslant n$.

Proof. Suppose first that $x \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$. Observe that if $t \in\left[x_{j+1, n}, x_{j, n}\right], 1 \leqslant j \leqslant n$, we have

$$
\begin{align*}
\left|\frac{1-\left(|t| / a_{n}\right)+L \delta_{n}}{1-\left(\left|x_{j, n}\right| / a_{n}\right)+L \delta_{n}}-1\right| & \leqslant \frac{1}{a_{n}}\left|\frac{x_{j, n}-t}{1-\left(\left|x_{j, n}\right| / a_{n}\right)+L \delta_{n}}\right| \\
& \leqslant \frac{1}{a_{n}}\left|\frac{x_{j, n}-x_{j+1, n}}{1-\left(\left|x_{j, n}\right| / a_{n}\right)+L \delta_{n}}\right| \leqslant \frac{C \Psi_{n}\left(x_{j, n}\right)}{n(L-A) \delta_{n}} \leqslant \frac{1}{2} \tag{3.4}
\end{align*}
$$

by (1.16), (2.1), and (2.2) if L is large enough.
We conclude using (1.16) and (3.4) that

$$
\begin{equation*}
\Psi_{n}(t) \sim \Psi_{n}\left(x_{j, n}\right) \quad \text { uniformly for } \quad j, n \quad \text { and } \quad t \in\left[x_{j+1, n}, x_{j, n}\right] . \tag{3.5}
\end{equation*}
$$

Now by definition of $x_{k(x), n}$, we must have $x \in\left[x_{k(x)+1, n}, x_{k(x), n}\right]$ or $x \in\left[x_{k(x), n}, x_{k(x)-1, n}\right]$ at least when $x \leqslant x_{1, n}$. Using (2.3) and (2.4) if necessary, we may assume without loss of generality that $x \in$ $\left[x_{k(x)+1, n}, x_{k(x), n}\right]$.

Then by (2.2) and (3.5),

$$
\begin{align*}
\left|x-x_{k(x) \pm 2, n}\right| & \leqslant\left|x_{k(x)-2, n}-x_{k(x)+2, n}\right| \\
& \leqslant C \frac{a_{n}}{n} \Psi_{n}\left(x_{k(x), n}\right) \\
& \sim \frac{a_{n}}{n} \Psi_{n}(x) . \tag{3.6}
\end{align*}
$$

Using (3.6) and (2.2) we see that it is possible to choose M such that (3.1) holds at least when $x \leqslant x_{1, n}$. Suppose $x \geqslant x_{1, n}$. We may then suppose that L is chosen large enough such that $x_{3, n} \geqslant a_{n}\left(1-(L / 4) \delta_{n}\right)$ and then

$$
\begin{aligned}
\left|x-x_{3, n}\right| \leqslant & a_{n}\left(1+\frac{L}{2} \delta_{n}\right)-a_{n}\left(1-\frac{L}{4} \delta_{n}\right) \\
& \sim a_{n} \delta_{n} \sim \frac{a_{n}}{n} \Psi_{n}(x)
\end{aligned}
$$

using (1.15) and (1.16).
Thus also in this case, it is possible to choose M such that (3.1) holds. Parts (ii) and (iii) of the lemma then follow similarly.

Now fix M and δ in Lemma 3.1 and put

$$
\begin{equation*}
J_{n}:=\left[x_{n, n}, x_{1, n}\right] \backslash\left[x_{k(x)+2}, x_{k(x)-2}\right] \tag{3.7}
\end{equation*}
$$

if $|x| \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$ and

$$
\begin{equation*}
J_{n}:=\left[x_{n, n}, x_{1, n}\right] \tag{3.8}
\end{equation*}
$$

if $|x| \in\left[a_{n}\left(1+(L / 2) \delta_{n}, \infty\right)\right.$.
We modify the definition in (3.7) accordingly if $|x| \geqslant x_{1, n}$.
We have the following estimate.
Lemma 3.2. Uniformly for $1 \leqslant j \leqslant n$ and $n \geqslant N_{0}$,

$$
\sum_{\substack{j=1 \tag{3.9}\\
j \neq[k(x)+2, k(x)-2]}}^{n} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|^{\alpha}}=\left\{\begin{array}{ll}
O\left(a_{n}^{1-\alpha}\right), & 0<\alpha<1 \\
O(\log n), & \alpha=1 \\
O\left(\frac{n}{a_{n} \Psi_{n}(x)}\right)^{\alpha-1}, & \alpha>1 .
\end{array}\right\}
$$

Proof. First note that if $|x| \leqslant a_{n}\left(1+(L / 2) \delta_{n}\right)$, we have uniformly for $n \geqslant N_{0}$ and $1 \leqslant j \leqslant n$,

$$
\begin{equation*}
|x-t| \sim\left|x-x_{j, n}\right|, \quad t \in\left[x_{j+1, n}, x_{j, n}\right], j \notin[k(x)+2, k(x)-2] . \tag{3.10}
\end{equation*}
$$

This follows much as in [3] using Lemma 3.1(a) and (2.2) since,

$$
\begin{aligned}
\left|\frac{x-t}{x-x_{j, n}}-1\right| & =\left|\frac{t-x_{j, n}}{x-x_{j, n}}\right| \\
& \leqslant\left|\frac{x_{j, n}-x_{j+1, n}}{x-x_{j, n}}\right| \leqslant C
\end{aligned}
$$

and similarly we can bound

$$
\frac{x-x_{j, n}}{x-t}
$$

Then, from (2.2) and the definition of J_{n} in (3.7), we obtain

$$
\begin{aligned}
\sum_{\substack{j=1 \\
j \notin[k(x)+2, k(x)-2]}}^{n} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|^{\alpha}} & =O\left(\int_{\substack{|t| \leqslant a_{n}\left(1+A \delta_{n}\right) \\
t \in J_{n}}} \frac{d t}{|x-t|^{\alpha}}\right) \\
& =\left\{\begin{array}{ll}
O\left(a_{n}^{1-\alpha}\right), & 0<\alpha<1 \\
O(\log n), & \alpha=1 \\
O\left(\frac{n}{a_{n} \Psi_{n}(x)}\right)^{\alpha-1}, & \alpha>1
\end{array}\right\}
\end{aligned}
$$

The case for $|x| \geqslant a_{n}\left(1+(L / 2) \delta_{n}\right)$ is similar but easier.

We may now proceed with the proofs of our upper bounds. We begin with:

Proof of the Upper Bound in (1.17). From (2.30) we have for $1 \leqslant j \leqslant n$,

$$
\begin{aligned}
& W(x) l_{j, n}\left(U_{n}\right)(x) W^{-1}\left(x_{j, n}\right) \\
& \quad \leqslant C_{1}\left(\frac{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}\right)^{1 / 4} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|} .
\end{aligned}
$$

Thus, by (1.6) and using the above, we have

$$
\begin{align*}
\Lambda_{n}\left(W, U_{n}\right)(x)= & \sum_{j=1}^{n} W(x)\left|l_{j, n}\left(U_{n}\right)(x)\right| W^{-1}\left(x_{j, n}\right) \\
\leqslant & \sum_{j \in[k(x)+2, k(x)-2]} W(x)\left|l_{j, n}\left(U_{n}\right)(x)\right| W^{-1}\left(x_{j, n}\right) \\
& +C_{1} \sum_{j \notin[k(x)+2, k(x)-2]}\left(\frac{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}\right)^{1 / 4} \\
& \times \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|} . \tag{3.11}
\end{align*}
$$

First observe that we may write

$$
\begin{equation*}
\frac{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}} \leqslant 1+\frac{\left|x-x_{j, n}\right|}{a_{n}\left(\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}\right)} . \tag{3.12}
\end{equation*}
$$

Next we observe that using (2.10), we may assume without loss of generality that $|x| \leqslant a_{n}$. Then (3.12) becomes using the definition of δ_{n} (see (1.15))

$$
\begin{equation*}
\left(\frac{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}\right)^{1 / 4}=O(1)+O\left(\frac{n^{1 / 6} T\left(a_{n}\right)^{1 / 6}\left|x-x_{j, n}\right|^{1 / 4}}{a_{n}^{1 / 4}}\right) . \tag{3.13}
\end{equation*}
$$

Thus using (2.16), (3.9), and (3.13), we now rewrite (3.11) as

$$
\begin{align*}
\Lambda_{n}\left(W, U_{n}\right)(x) \leqslant & C_{2} \sum_{j \in[k(x)+2, k(x)-2]} 1 \\
& +O\left(\sum_{j \notin[k(x)+2, k(x)-2]} \frac{n^{1 / 6} T\left(a_{n}\right)^{1 / 6} \Delta x_{j, n}}{a_{n}^{1 / 4}\left|x-x_{j, n}\right|^{3 / 4}}\right) \\
& +O\left(\sum_{j \notin[k(x)+2, k(x)-2]} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|}\right) \\
= & O(1)+O(\log n)+O\left(n^{1 / 6} T\left(a_{n}\right)^{1 / 6}\right) \\
= & O\left(n^{1 / 6} T\left(a_{n}\right)^{1 / 6}\right) \tag{3.14}
\end{align*}
$$

and so we have taking sup's,

$$
\begin{equation*}
\left\|\Lambda_{n}\left(W, U_{n}\right)\right\|_{L_{\infty}(\mathbf{R})}=O\left(n^{1 / 6} T\left(a_{n}\right)^{1 / 6}\right) \tag{3.15}
\end{equation*}
$$

as required.
We now present,
Proof of Our Upper Bound in (1.24). Firstly, from (2.31) we have for $1 \leqslant j \leqslant n$,

$$
\begin{align*}
& W(x) l_{j, n+2}\left(V_{n+2}\right)(x) W^{-1}\left(x_{j, n}\right) \\
& \quad \leqslant C_{1}\left(\frac{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}\right)^{-3 / 4} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|} . \tag{3.16}
\end{align*}
$$

Thus by (1.6), (2.19), (2.20), and (3.16), we have

$$
\begin{align*}
& \Lambda_{n+2}\left(W, V_{n+2}\right)(x) \\
& \leqslant
\end{align*}
$$

where

$$
\sum_{1}(x):=\sum_{\substack{j=1 \\ j \in[k(x)+2, k(x)-2]}}^{n} W(x)\left|l_{j, n+2}\left(V_{n+2}\right)(x)\right| W^{-1}\left(x_{j, n}\right)
$$

and

$$
\sum_{2}(x):=C_{2} \sum_{\substack{j=1 \\ j \notin[k(x)+2, k(x)-2]}}^{n}\left(\frac{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}\right)^{-3 / 4} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|} .
$$

We observe that using (2.11), we may assume without loss of generality that $|x| \leqslant a_{n+1}$. We begin with the estimation of $\sum_{1}(x)$.

Note, that by (2.24), (2.33), and (2.34),

$$
\begin{align*}
\sum_{1}(x)= & \sum_{\substack{j=1 \\
j \notin[k(x)+2, k(x)-2]}}^{n}\left|\frac{y_{0}^{2}-x^{2}}{y_{0}^{2}-x_{j, n}^{2}}\right| W(x)\left|l_{j, n}\left(U_{n}\right)(x)\right| W^{-1}\left(x_{j, n}\right) \\
= & O\left(\sum_{\substack{j=1 \\
j \in[k(x)+2, k(x)-2]}}^{n}\left(\frac{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}\right)\right. \\
& \left.\times W(x)\left|l_{j, n}\left(U_{n}\right)(x)\right| W^{-1}\left(x_{j, n}\right)\right) . \tag{3.18}
\end{align*}
$$

Next, using (2.1), (2.2), and (2.4), it is easy to see that if L is large enough, we have uniformly for x and $j \in[k(x)+2, k(x)-2]$,

$$
\left(\frac{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}\right) \sim 1
$$

so that

$$
\begin{align*}
\sum_{1}(x) & =O\left(\sum_{\substack{j=1 \\
j \in[k(x)+2, k(x)-2]}}^{n} W(x)\left|l_{j, n}\left(U_{n}\right)(x)\right| W^{-1}\left(x_{j, n}\right)\right) \\
& =O(1) \tag{3.19}
\end{align*}
$$

by (2.16).
We now turn to the delicate estimation of $\sum_{2}(x)$.
Much as in (3.12), we observe that for $1 \leqslant j \leqslant n$ we have

$$
\begin{align*}
& \left(\frac{\left|1-\left(|x| / a_{n}\right)\right|+L \delta_{n}}{\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}}\right)^{3 / 4} \\
& \quad \leqslant 1+\frac{\left|x-x_{j, n}\right|^{3 / 4}}{a_{n}^{3 / 4}\left(\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}\right)^{3 / 4}} . \tag{3.20}
\end{align*}
$$

Then, using (3.20), we may write

$$
\sum_{2}(x)=O\left(\sum_{j \in S} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|}+\sum_{j \in S} \frac{\Delta x_{j, n}}{a_{n}^{3 / 4}\left|x-x_{j, n}\right|^{1 / 4}\left(\left|1-\left(\left|x_{j, n}\right| / a_{n}\right)\right|+L \delta_{n}\right)^{3 / 4}}\right),
$$

where

$$
\begin{aligned}
S & =\{j: 1 \leqslant j \leqslant n, j \notin[k(x)+2, k(x)-2]\}, \\
& =O(\log n)+O\left(\sum_{j \in S} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|^{1 / 4}\left(\left|a_{n}-\left|x_{j, n}\right|\right|+a_{n} L \delta_{n}\right)^{3 / 4}}\right)
\end{aligned}
$$

by (3.9)

$$
\begin{align*}
= & O(\log n)+O\left(\sum_{\substack{j \in S \\
\left|x_{j, n}\right| \leqslant a_{n}\left(1-\delta_{n}\right)}} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|^{1 / 4}\left(a_{n}-\left|x_{j, n}\right|\right)^{3 / 4}}\right) \\
& +O\left(\sum_{\substack{j \in S \\
\left|x_{j, n}\right|>a_{n}\left(1-\delta_{n}\right)}} \frac{\Delta x_{j, n} n^{1 / 2} T\left(a_{n}\right)^{1 / 2}}{\left|x-x_{j, n}\right|^{1 / 4} a_{n}^{3 / 4}}\right) . \tag{3.21}
\end{align*}
$$

Next, using the Geometric and Arithmetic mean inequality and (3.9) again, we may continue (3.21) as

$$
\begin{align*}
\sum_{2}(x)= & O(\log n) \\
& +O\left(\sum_{\substack{j \in S \\
\left|x_{j, n}\right| \leq a_{n}\left(1-\delta_{n}\right)}} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|}\right)+O\left(\sum_{\substack{\left|x_{j, n}\right| \leqslant a_{n}\left(1-\delta_{n}\right)}} \frac{\Delta x_{j, n}}{a_{n}-\left|x_{j, n}\right|}\right) \\
& +O\left(\frac{n^{1 / 2} T\left(a_{n}\right)^{1 / 2}}{a_{n}^{3 / 4}} \sum_{\substack{j \in S \\
\left|x_{j, n}\right|>a_{n}\left(1-\delta_{n}\right)}} \frac{\Delta x_{j, n}}{\left|x-x_{j, n}\right|^{1 / 4}}\right) \\
= & O(\log n)+O\left(\sum_{\substack{j \in S \\
\left|x_{j, n}\right|>a_{n}\left(1-\delta_{n}\right)}} 1\right), \tag{3.22}
\end{align*}
$$

where in the last line we used (1.15), (1.16), (2.1), and (2.2).
Now it remains to observe that the spacing (2.2) and (1.16) imply that there exist at most a finite number of j such that $\left|x_{j, n}\right|>a_{n}\left(1-\delta_{n}\right)$. Then (3.22) yields

$$
\begin{equation*}
\sum_{2}(x)=O(\log n)+O(1)=O(\log n) . \tag{3.23}
\end{equation*}
$$

Combining (3.23) with (3.19) and taking sup's yield

$$
\begin{equation*}
\left\|\Lambda_{n+2}\left(W, V_{n+2}\right)\right\|_{L_{\infty}(\mathbf{R})}=O(\log n) \tag{3.24}
\end{equation*}
$$ as required.

4. THE PROOFS OF THEOREMS 1.2 AND 1.4 AND COROLLARIES 1.3 AND 1.5

In this section we present the proofs of our lower bounds in (1.17) and (1.24). We deduce Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5 .

We begin with,
Proof of Our Lower Bound in (1.17). Write

$$
\begin{equation*}
\Lambda_{n}\left(W, U_{n}\right)(x)=W(x)\left|p_{n}(x)\right| \sum_{j=1}^{n} p_{n}^{\prime}\left(x_{j, n}\right)^{-1} W\left(x_{j, n}\right)^{-1}\left|x-x_{j, n}\right|^{-1} . \tag{4.1}
\end{equation*}
$$

In particular, (4.1) becomes using (1.16), (2.9), (2.12), and (2.17),

$$
\begin{align*}
\Lambda_{n}\left(W, U_{n}\right)\left(y_{0}\right) & \geqslant C_{1} \sum_{0 \leqslant x_{j, n} \leqslant a_{n} / 2} \frac{a_{n}^{-1 / 2} n^{1 / 6} T\left(a_{n}\right)^{1 / 6}}{a_{n}^{-1 / 2}\left(1-\left(\left|x_{j, n}\right| / a_{n}\right)+L \delta_{n}\right)^{-1 / 4} n} \\
& \geqslant C_{2} n^{-5 / 6} T\left(a_{n}\right)^{1 / 6} \sum_{0 \leqslant x_{j, n} \leqslant a_{n} / 2} 1 . \tag{4.2}
\end{align*}
$$

Now it remains to observe that the spacing (2.2) and (1.16) imply that there exist $\geqslant C_{3} n j$ such that $x_{j, n} \in\left[0, a_{n} / 2\right]$. Then (4.2) becomes

$$
\Lambda_{n}\left(W, U_{n}\right)\left(y_{0}\right) \geqslant C_{4} n^{1 / 6} T\left(a_{n}\right)^{1 / 6}
$$

so that

$$
\begin{equation*}
\left\|\Lambda_{n}\left(W, U_{n}\right)\right\|_{L_{\infty}(\mathbf{R})} \geqslant \Lambda_{n}\left(W, U_{n}\right)\left(y_{0}\right) \geqslant C_{5} n^{1 / 6} T\left(a_{n}\right)^{1 / 6} \tag{4.3}
\end{equation*}
$$

as required.
We now turn to the proof of our lower bound (1.24). Here a choice of $x=y_{0}$ is not sufficient to achieve our lower bound and we need to proceed more carefully. Indeed, we will show that the point we need sits "far" away from a_{n}.

Proof of Our Lower Bound for (1.24). First we claim that there exists $y \in \mathbf{R}$ satisfying $|y| \leqslant \alpha a_{n}$, for some $0<\alpha<1$ and uniformly for $n \geqslant 1$,

$$
\begin{equation*}
a_{n}^{1 / 2} p_{n} W(y) \sim 1 . \tag{4.4}
\end{equation*}
$$

To see this, observe first that if $0<\alpha<1$ is given, then by (1.16), (2.2), and (2.9), there exits $C_{1} n>j, 1 \leqslant j \leqslant n+1$ such that $\left|x_{j, n+1}\right| \in\left[0, \alpha a_{n}\right]$. Now choose $y=y_{1}=x_{k, n+1}$ for some $1 \leqslant k \leqslant n+1$ such that $\left|y_{1}\right| \in$ [$\left.0, \alpha a_{n}\right]$. Then (2.9) and (2.17) give

$$
a_{n}^{1 / 2}\left|p_{n} W\right|\left(y_{1}\right) \sim 1
$$

and (4.4) is established. Fix y_{1} as above.
We now proceed as follows. Since $y_{1}<c y_{0}$, for some $0<c<1$, we have by (1.29), (2.12), (2.33), and (4.4),

$$
\begin{aligned}
\Lambda_{n+2}\left(W, V_{n+2}\right)\left(y_{1}\right) & \geqslant \sum_{j=1}^{n} W\left(y_{1}\right) W\left(x_{j, n}\right)^{-1}\left(\frac{y_{0}^{2}-y_{1}^{2}}{y_{0}^{2}}\right) l_{j, n}\left(U_{n}\right)\left(y_{1}\right) \\
& \geqslant C_{1} \sum_{j=1}^{n} W\left(y_{1}\right) W\left(x_{j, n}\right)^{-1} l_{j, n}\left(U_{n}\right)\left(y_{1}\right) \\
& \geqslant C_{2} \Lambda_{n}\left(W, U_{n}\right)\left(y_{1}\right) \geqslant C_{3} a_{n}^{1 / 2}\left|p_{n} W\right|\left(y_{1}\right) \log n \\
& \geqslant C_{4} \log n .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left\|\Lambda_{n+2}\left(W, V_{n+2}\right)\right\|_{L_{\infty}(\mathbf{R})} \geqslant C_{4} \log n \tag{4.5}
\end{equation*}
$$

and we have proved our lower bound.
We may now present:
Proof of Theorem 1.2. This follows immediately from (3.15) and (4.3).

Proof of Corollary 1.3. Relation (1.18) follows from the representation (1.6), (1.17), and Theorem 1.2 of [4]. Relations (1.21) and (1.22) follow from (1.18), Corollary 1.7 of [3], and (2.7). |

Proof of Theorem 1.4. This follows immediately from (3.24) and (4.5).

Proof of Corollary 1.5. Relation (1.25) follows from the representation (1.6), (1.24), and Theorem 1.2 of [4]. Relations (1.26) and (1.27) follow from (1.25), Corollary 1.7 of [3], and (2.7).

5. POINTWISE ESTIMATES OF $\Lambda_{n}\left(W, U_{n}\right)$

In this section, we sketch briefly the proof of Theorem 1.6.
Fix $x, x_{k(x), n}, M, \delta$, and J_{n} as in Section 3.
Step 1. Set

$$
\begin{aligned}
& S_{1}:=\left\{j: \leqslant j \leqslant n,\left|x-x_{j, n}\right| \leqslant \frac{\delta a_{n}}{n} \Psi_{n}(x)\right\}, \\
& S_{2}:=\left\{j: \leqslant j \leqslant n, \frac{\delta a_{n}}{n} \Psi_{n}(x) \leqslant\left|x-x_{j, n}\right| \leqslant \frac{M a_{n}}{n} \Psi_{n}(x)\right\},
\end{aligned}
$$

and

$$
S_{3}:=\left\{j: 1 \leqslant j \leqslant n,\left|x-x_{j, n}\right|>\frac{M a_{n}}{n} \Psi_{n}(x)\right\} .
$$

Now write

$$
\Lambda_{n}\left(U_{n}, W\right)(x):=\sum_{j \in S_{1}}(x)+\sum_{j \in S_{2}}(x)+\sum_{j \in S_{3}}(x) .
$$

Step 2. Estimation of $\sum_{j \in S_{1}}(x)$ and $\sum_{j \in S_{2}}(x)$. First observe that it suffices to estimate the above sums for $x \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$ for they are identically zero outside this range of x. Moreover, recall that we may assume by symmetry that $x>0$.

Then the following holds:

Lemma 5.1. Let $W \in \mathscr{E}$.
(a) There exists $C_{1} \geqslant 0$ such that uniformly for $n \geqslant 1$ and $x \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$,

$$
\begin{equation*}
0 \leqslant \sum_{j \in S_{1}}(x) \leqslant C_{1} . \tag{5.1}
\end{equation*}
$$

Moreover, uniformly for $n \geqslant 1$ and $x \in\left[0, x_{1, n}\right]$,

$$
\begin{equation*}
\sum_{j \in S_{1}}(x) \sim 1 \tag{5.2}
\end{equation*}
$$

(b) Uniformly for $x \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$ and $n \geqslant N_{0}$,

$$
\begin{equation*}
\sum_{j \in S_{2}}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left(1-\frac{|x|}{a_{n}}+L \delta_{n}\right)^{1 / 4} \tag{5.3}
\end{equation*}
$$

Proof. First note that (2.16) gives

$$
\begin{aligned}
\sum_{j \in S_{1}}(x) & =W(x) \sum_{j \in S_{1}}\left|l_{j, n}\left(U_{n}\right)(x)\right| W^{-1}\left(x_{j, n}\right) \\
& \leqslant C \sum_{j \in S_{1}} 1 \leqslant C_{1}
\end{aligned}
$$

for some $C_{1}>0$ independent of x and n as the above sum is finite.

For the lower sum, we use the weighted Erdős-Turan inequality (see, for example, [5])
$l_{j, n}\left(U_{n}\right)(x) W(x) W^{-1}\left(x_{j, n}\right)+l_{j+1, n}\left(U_{n}\right)(x) W(x) W^{-1}\left(x_{j+1, n}\right) \geqslant 1$
valid for $n \geqslant 2,1 \leqslant j \leqslant n-1$, and $x \in\left[x_{j+1, n}, x_{j, n}\right]$.
If $x \leqslant x_{1, n}$, we may assume without loss of generality that $x \in$ [$\left.x_{k(x)+1, n}, x_{k(x), n}\right]$. Then (5.4) gives

$$
\sum_{j \in S_{1}}(x) \geqslant W(x) \sum_{j=k(x)}^{k(x)+1} l_{j, n}\left(U_{n}\right)(x) W^{-1}\left(x_{j, n}\right) \geqslant C_{2} .
$$

Thus (5.1) and (5.2) follow.
It remains to show (5.3). Here we first observe that by (2.2) we have uniformly for $j \in S_{2}$,

$$
\begin{equation*}
\frac{a_{n}}{n} \Psi_{n}\left(x_{j, n}\right) \sim\left|x_{j, n}-x_{j \pm 1, n}\right| \sim\left|x-x_{j, n}\right| . \tag{5.5}
\end{equation*}
$$

Then (2.15) and (5.5) easily yield.

$$
\sum_{j \in S_{2}}(x) \sim \sqrt{a_{n}}\left|p_{n} W\right|(x)\left(1-\frac{|x|}{a_{n}}+L \delta_{n}\right)^{1 / 4}
$$

as required.
Step 3. Preliminary Estimation of $\sum_{j \in S_{3}}(x)$.

Lemma 5.2. Let $W \in \mathscr{E}$.
(a) If $|x| \leqslant 2 a_{n}$, we have uniformly for x and $n \geqslant N_{0}$,

$$
\begin{equation*}
\sum_{j \in S_{3}}(x) \sim \sqrt{a_{n}} p_{n} W(x) \int_{\substack{|t| \leqslant a_{n}\left(1+A \delta_{n}\right) \\ t \in J_{n}}} \frac{\left(1-\left(|t| / a_{n}\right)+L \delta_{n}\right)^{1 / 4}}{|x-t|} d t . \tag{5.6}
\end{equation*}
$$

(b) If $|x| \leqslant 2 a_{n}$, we have uniformly for x and $n \geqslant N_{0}$,

$$
\begin{equation*}
\sum_{j \in S_{3}}(x) \sim \frac{\sqrt{a_{n}} p_{n} W(x)}{|x|} \int_{\substack{|t| \leq a_{n}\left(1+A \delta_{n}\right) \\ t \in J_{n}}}\left(1-\frac{|t|}{a_{n}}+L \delta_{n}\right)^{1 / 4} d t . \tag{5.7}
\end{equation*}
$$

Proof. We consider the case $x \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$ and $x \leqslant x_{1, n}$. The other cases are similar.

By (2.2) and (2.15),

$$
\begin{align*}
\sum_{j \in S_{3}}(x) \sim & \sqrt{a_{n}} p_{n} W(x) \\
& \times \sum_{j \in[1, n] \backslash[k(x)+2, k(x)-2]} \int_{x_{j+1, n}}^{x_{j, n}} \frac{\left(1-\left(\left|x_{j, n}\right| / a_{n}+L \delta_{n}\right)^{1 / 4}\right.}{\left|x-x_{j, n}\right|} d t . \tag{5.8}
\end{align*}
$$

Then much as in (3.10), (5.8) readily yields (5.6) for this case.
Step 4. Estimation of $J:=\int_{|t| \leqslant a_{n}\left(1+A \delta_{n}\right), t \in J_{n}}\left(1-|t| / a_{n}+L \delta_{n}\right)^{1 / 4} d t$. We now record the following technical estimate for J :

Lemma 5.3. Let $W \in \mathscr{E}$ and suppose that $x \in\left[0, a_{n}\left(1+(L / 2) \delta_{n}\right)\right]$. Then uniformly for x and $n \geqslant N_{0}$,

$$
\begin{equation*}
J \sim\left(1-\frac{|x|}{a_{n}}+L \delta_{n}\right)^{1 / 4} \log \left(\frac{n\left(1-|x| / a_{n}+L \delta_{n}\right)}{\Psi_{n}(x)}\right)+1 . \tag{5.9}
\end{equation*}
$$

Step 5. Proof of Theorem 1.6. Observe that for $|x| \leqslant a_{n}\left(1+(L / 2) \delta_{n}\right)$,

$$
\log \left(\frac{n\left(1-|x| / a_{n}+L \delta_{n}\right)}{\Psi_{n}(x)}\right)>0 \quad \text { if } \quad L \text { is large enough. }
$$

Then (5.1), (5.2), (5.3), and (5.9) yield the result for this case. Theorem 1.6 (b) and (c) are similar but easier.

ACKNOWLEDGMENTS

The author thanks J. Szabados for showing him the preprint [14]. The author also thanks the referees for their useful comments with regard to the presentation of this paper.

REFERENCES

1. S. S. Bonan, "Weighted Mean Convergence of Lagrange Interpolation," Ph.D. Thesis, Ohio State University, Columbus, OH, 1982.
2. S. B. Damelin, Smoothness theorems for Erdős weights, II, J. Approx. Theory, in press.
3. S. B. Damelin, Converse and smoothness theorems for Erdős weights in $L_{p}(0<p \leqslant \infty)$, J. Approx. Theory, in press.
4. S. B. Damelin and D. S. Lubinsky, Jackson theorems for Erdős weights in $L_{p}(0<p \leqslant \infty)$, J. Approx. Theory, in press.
5. S. B. Damelin and D. S. Lubinsky, Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Erdős weights, Canad. Math. J. 40 (1996), 710-736.
6. G. Freud, Lagrangesche Interpolation über die Nullstellen der Hermiteschen Orthogonalpolynome, Studia Sci. Math. Hungar. 4 (1969), 179-190.
7. A. Knopmacher, "Linear Operators and Christoffel Functions Associated with Orthogonal Polynomials," Ph.D thesis, University of the Witwatersrand, Jonannesburg, 1985.
8. A. L. Levin, D. S. Lubinsky, and T. Z. Mthembu, Christoffel functions and orthogonal polynomials for Erdős weights on ($-\infty, \infty$), Rend. Mat. Appl. 14 (1994), 199-289.
9. D. S. Lubinsky, Ideas of weighted polynomial approximation on $(-\infty, \infty)$, in "Proc. Eighth Texas Symposium on Approximation Theory" (Chui et al., Eds.), World Scientific, Singapore, 1995.
10. D. Matjila, "Lagrange Interpolation for Freud Weights," Ph.D. Thesis, University of the Witwatersrand, 1993.
11. D. M. Matjila, Bounds for Lebesgue functions for Freud weights, J. Approx. Theory 79 (1994), 385-401.
12. P. Nevai, Lagrange interpolation at the zeros of Laugerre polynomials, Mat. Lapok 22 (1971), 149-164.
13. P. Nevai, Fourier series and interpolation, II, Mat. lapok 24 (1973), 49-61.
14. J. Szabados, Weighted Lagrange interpolation and Hermite-Fejér interpolation on the real line, preprint.
15. J. Szabados and P. Véresi, "Interpolation of Functions," World Scientific, Singapore, 1991.
