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We establish pointwise as well as uniform estimates for Lebesgue functions
associated with a large class of Erdo� s weights on the real line. An Erdo� s weight is
of the form W :=exp(&Q), where Q : R � R is even and is of faster than polyno-
mial growth at infinity. The archetypal examples are

Wk, : (x) :=exp(&Qk, : (x)), (i)

where Qk, : (x) :=expk ( |x|:), :>1, k�1. Here expk :=exp(exp(exp(...))) denotes
the k th iterated exponential.

WA, B(x) :=exp(&QA, B(x)), (ii)

where QA, B(x) :=exp(log(A+x2))B, B>1 and A>A0 . For a carefully chosen
system of nodes /n :=[!1 , !2 , ..., !n], n�1, our result imply in particular, that
the Lebesgue constant &4n (Wk, : , /n)&L�(R) :=supx # R |4n (Wk, : , /n)| (x) satisfies
uniformly for n�N0 , &4n (Wk, : , /n)&L�(R) tlog n. Moreover, we show that this
choice of nodes is optimal with respect to the zeros of the orthonormal polynomials
generated by W2. Indeed, let Un :=[xj, n : 1� j�n], n�1, where the xk, n are the
zeros of the orthogonal polynomials pn (W 2, } ) generated by W2. Then in particular,
we have uniformly for n�N, &4n (Wk, : , Un)&L�(R) tn1�6(>k

j=1 log j n)1�6. Here,
logj :=log(log(log(...))) denotes the j th iterated logarithm. We deduce sharp
theorems of uniform convergence of weighted Lagrange interpolation together with
rates of convergence. In particular, these results apply to Wk, : and WA, B . � 1998

Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we investigate Lebesgue bounds and uniform convergence
of Lagrange interpolation for Erdo� s weights. We recall that an Erdo� s
weight has the form

W :=exp(&Q),
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where Q : R � R is even and is of faster than polynomial growth at infinity.
The archetypal examples are

(i) Wk, : (x) :=exp(&Qk, : (x)), (1.1)

where

Qk, : (x) :=expk ( |x|:), k�1, :>1.

Here expk :=exp(exp(exp(...))) denotes the k th iterated exponential.

(ii) WA, ; (x) :=exp(&QA, B(x)), (1.2)

where

QA, B(x) :=exp(log(A+x2))B,

B�1 and A is large enough but fixed.

Throughout, let f : R � R be continuous and satisfy the decay condition,

lim
|x| � �

| f W| (x)=0. (1.3)

We set

En[ f ]W, � := inf
P # Pn

&( f &P)(x) W(x)&L�(R) (1.4)

to be the error of best weighted polynomial approximation to f from Pn ,
n�1.

Here, Pn denotes the class of polynomials of degree �n.
It is well known [9] that

En[ f ]W, � � 0 as n � �.

Now let

/n :=[!1 , !2 , ..., !n], n�1,

be an arbitrary set of nodes. The Lagrange interpolation polynomial to f
with respect to /n is denoted by Ln[ f, W, /n]. Thus, if

lj, n (/n) # Pn&1 , 1� j�n,

are the fundamental polynomials of Lagrange interpolation at !j , 1� j�n,
satisfying

lj, n (/n)(!j, n)=$j, k , 1�k�n,
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then

Ln[ f, W, /n](x)= :
n

j=1

f (!j, n) lj, n (/n)(x) # Pn&1 . (1.5)

Now write

&W( f &Ln[ f, W, /n])&L�(R)

�En&1[ f ]W, � \1+"W(x) :
n

j=1

|lj, n (/n)(x)| W&1 (!j)"L�(R)+
=En&1[ f ]W, � (1+&4n (W, /n)&L�(R)), (1.6)

where &4n (W, /n)&L�(R) is called the Lebesgue constant with respect to the
weight W and the set of nodes /n , and 4n (W, /n) is the corresponding
Lebesgue function.

Using (1.6), we see that estimates of the size of the Lebesgue constant
enable one to deduce theorems on uniform convergence of Lagrange inter-
polation. As the subject of weighted Lagrange interpolation is an exten-
sively researched and widely studied subject, we refer the reader to [1, 5�7,
10�15].

Now given a weight W : R � (0, 1] as above, we may define orthonormal
polynomials

pn (x) :=pn (W 2, x)=#nxn+ } } } , with #n=#n (W2)>0,

satisfying

|
R

pn (W2, x) pm (W2, x) W 2 (x) dx=$mn .

We denote the zeros of pn by

&�<xn, n<xn&1, n< } } } <x2, n<x1, n<�.

Put

Un :=[xj, n : 1� j�n], n�1. (1.7)

To formulate our results, we need a suitable class of Erdo� s weights from
[8].
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Definition 1.1. Let W :=exp(&Q), where Q : R � R is even, con-
tinuous, Q" exists in (0, �), Q( j)�0 in (0, �), j=0, 2, Q(1)>0 in (0, �),
and the function

T(x) :=1+
xQ"(x)
Q(x)

(1.8)

is increasing in (0, �) with

lim
x � �

T(x)=�, T(0+) := lim
x � 0+

T(x)>1. (1.9)

Moreover, we assume that for some Cj>0, 1� j�3,

C1�
T(x)

(xQ$(x)�Q(x))
�C2 , x�C3 (1.10)

and for every =>0,

T(x)=O((Q(x))=), x � �. (1.11)

Then, we write W # E.

The principle examples of W # E are Wk, : and WA, B given by (1.1) and
(1.2), respectively. For more on this subject we refer the reader to [2�4, 8].

To state our results, we need some more notation.
We need the Mhaskar�Rakhmanov�Saff number au defined as the

positive root of the equation

u=
2
? |

1

0

au tQ$(au t) dt

- 1&t2
, u>0. (1.12)

Here, au exists and is a strictly increasing function of u [8, 9]. Among
its uses is the infinite-finite range inequality

&PW&L�(R)=&PW&L�[&an , an] , P # Pn . (1.13)

Note that an depends only on the degree of the polynomial P and not on
P itself.

Now choose y0 # [&an , an] so that

| pnW( y0)|=&pnW&L�(R) . (1.14)

As W is even, we may assume that y0�0. We will show later that in fact
y0>0 and is very ``close'' to an . Fix y0 as above.
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Finally set

$n :=(nT(an))&2�3, n�1, (1.15)

and

9n (x) :={
max {�1&

|x|
an

+L$n ,
1

T(an) - 1&(|x|�an)+L$n
= ,

(1.16)|x|�an

9(an), |x|�an .

Here, L>0 is fixed, but large enough throughout.
For more on these special sequences of functions, we refer the reader to

[5, 8].
Here and throughout, for real sequences An and Bn � 0,

An=O(Bn), An tBn , and An=o(Bn)

will mean respectively that there exist constants Cj>0, j=1, 2, 3, inde-
pendent of n, such that

An

Bn
�C1 , C2�

An

Bn
�C3 , and lim

n � � }An

Bn }=0.

Similar notation will be used for functions and sequences of functions.

Bounds for Lebesgue Constants and Uniform Convergence of Lagrange
Interpolation for Un , n�1. We begin our investigation with the sequence
of nodes, Un , n�1, defined by (1.7).

We prove:

Theorem 1.2. Let W # E. Then, uniformly for n�N0 ,

&4n (W, Un)&L�(R) tn1�6T (an)1�6. (1.17)

In particular, given =>0, there exists C>0 independent of n such that

&4n (W, Un)&L�(R)�Cn1�6+=.

We deduce:

Corollary 1.3. Let W # E and r�1. Then there exists Cj>0; j=1, 2,
independent of n and f so that for n�N0 ,
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(a) &( f &Ln[ f, W, Un])W&L�(R)

�C1 En&1[ f ]W, � n1�6T(an)1�6

�C2 |r, � \f, W,
an

n + n1�6T(an)1�6. (1.18)

Here,

|r, � ( f, W, t) :=[ sup
0<h�t

&W2r
h8t

1�2(x)( f )&L�( |x|�_(2t))

+ inf
P # Pr&1

&( f &P) W&L�( |x|�_(4t)) ], t>0

is the weighted modulus of smoothness of f,

_(t) :=inf {au :
au

u
�t= , (1.19)

8t (x) := } 1&
|x|

_(t) }+T(_(t))&1, x # R, (1.20)

and for an interval J and h>0,

2r
h( f, x, J) :={ :

r

i=0
\r

i+ (&1) i f \x+
rh
2

&ih+ , x\
rh
2

# J= .

0, otherwise

(b) Moreover, if f satisfies f (r)W # L� (R), then given =>0,

&( f &Ln[ f, W, Un]) W&L�(R)�C3 \an

n +
r

n1�6T(an)1�6 (1.21)

�C3 n1�6+=&r. (1.22)

Here C3>0 is independent of n.

Thus we can ensure uniform convergence for every r�1.

Remark. It is instructive at this point to recall that for Q=Qk, : of
(1.1),

T(an)= `
k

j=1

logj n.
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Moreover, in general, given =>0 and n�1,

T(an)=O(n=).

(See also (2.7)). We thus observe that we may dispense with the T(an)1�6

on the right hand side of (1.17) by inserting an extra weighting factor into
the left hand side of (1.17) in the following sense.

Under the hypotheses of Theorem 1.2, we have uniformly for n�N0 ,

"4n (W, Un) \}1&
|x|
an }+T(an)&1+

1�6

"L�(R)

tn1�6. (1.23)

This follows easily using the proof of (1.17) and (2.11).

A Better Behaving Lebesgue Function. We observe that although (1.21)
yields uniform convergence for every r�1, we can substantially improve
our results, by choosing our interpolation points more carefully. The idea,
first exploited by J. Szabados [14] for Freud weights on the real line, is
motivated by (1.13). Recalling the definition of y0 in (1.14) and Un in (1.7),
we set

Vn+2 :=[&y0 , y0] _ Un , n�1,

and prove:

Theorem 1.4. Let W # E. Then uniformly for n�N0 ,

&4n+2 (W, Vn+2)&L�(R) tlog n. (1.24)

Thus, by adding two completely new points of interpolation, we can
achieve the much better order log n in comparison to the order (nT(an))1�6

that we obtained merely using the zeros of pn .
We deduce,

Corollary 1.5. Let W # E and r�1. Then there exists Cj>0, j=1, 2
independent of f and n so that for n�N0 ,

(a) &( f &Ln+1[ f, W, Vn+2]) W&L�(R)

�C1En[ f ]W, � log n

�C2|r, � \ f, W,
an

n + log n. (1.25)
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(b) Moreover, if f satisfies f (r)W # L� (R) then, given =>0,

&( f &Ln[ f, W, Un]) W&L�(R)�C3 \an

n +
r

log n (1.26)

�C3n&r+= log n. (1.27)

Here C3>0 is independent of n.

Remark. A natural question arises as to whether (1.24) holds (in a
lower bound sense) for any system of nodes, at least for some Erdo� s
weight. This and related questions will be considered in a future paper.

Pointwise Estimates for 4n (W, Un). We present pointwise estimates for
4n (W, Un). We emphasize our results and briefly sketch their proofs in
Section 5 as the arguments are straightforward, but rather lengthy.

Theorem 1.6. Let W # E.

(a) Then for n�N0 , there exists C>0 such that for |x|�
an (1+(L�2) $n),

4n (W, Un)(x)�C[1+- an | pnW|(x)

__\1&
|x|
an

+L$n+
1�4

log \n(1&(|x|�an)+L$n)
9n (x) ++1&& .

(1.28)

Moreover, we have uniformly for |x|�x1, n and n,

4n (W, Un)(x)t1+- an | pn W | (x)

__\1&
|x|
an

+L$n+
1�4

log \n(1&(|x|�an)+L$n)
9n (x) ++1&& . (1.29)

(b) Uniformly for n�N0 and an (1+(L�2) $n)�|x|�2an ,

4n (W, Un)(x)t- an | pnW | (x)[1+$1�4
n ]. (1.30)

(c) Uniformly for n�N0 and |x|�2an ,

4n (W, Un)(x)t
a3�2

n | pnW | (x)
|x|

[1+$1�4
n ]. (1.31)

Structure of This Paper. We close this section with some notation and
remarks concerning the structure of this paper. Throughout, C, C1 ,
C2 } } } >0 will denote constants independent of n, x and P # Pn . The same
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symbol does not necessarily denote the same constant in different occurren-
ces. We write C{C(L) to indicate that C is independent of L.

This paper is organized as follows.
In Section 2, we present our technical lemmas. In Section 3, we present

the proofs of our upper bounds for (1.17) and (1.24). In Section 4, we prove
Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5. Finally in Section 5, we
sketch briefly the main ideas in the proof of Theorem 1.6.

2. TECHNICAL LEMMAS

Lemma 2.1. Let W # E and set

x0, n :=x1, n (1+L$n) and xn, n+1 := &x0, n .

(a) There exists A>0 independent of n and L such that for n�1,

}x1, n

an
&1}�A$n . (2.1)

(b) Uniformly for n�2 and 0� j�n&1,

xj, n&xj+1, n t
an

n
9n (xj, n). (2.2)

(c) Uniformly for n�2 and 0< j�n&1,

1&
|xj, n |

an
+L$n t1&

|x j+1, n |
an

+L$n (2.3)

and

9n (x j, n)t9n (xj+1, n). (2.4)

(d) For n�1,

sup
x # R

| pnW | (x) }1&
|x|
an }

1�4

ta&1�2
n (2.5)

and

sup
x # R

| pnW | (x)tn1�6T(an)1�6 a&1�2
n . (2.6)

Proof. This is part of Lemma 2.1 of [5]. K

Now fix A in (2.1).
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Lemma 2.2. Let W # E.

(a) Given =>0 and n�1, there exists C>0 independent of n such that

an�Cn=, T(an)�Cn=, and $n�CT(an)&=. (2.7)

(b) Given 0<:<;, we have uniformly for n�C,

T(a:n)tT(a;n). (2.8)

(c) Uniformly for u # (C, �) and v # [u�2, 2u], we have

}au

av
&1}t } uv&1} T(an)&1. (2.9)

(d) Given m # N and n�N0 , we have for every [Pk]m
k=1 # Pn

"W :
m

k=1

|Pk |"L� (R)

="W :
m

k=1

|Pk | "L�[&an , an]

. (2.10)

Moreover, given r>1, there exists C=C(r)>0 independent of n, m, and
Pk such that

&W \}1&
|x|
an }+T(an)&1+

1�6

:
m

k=1

|Pk |"L�(R)

�C "W \}1&
|x|
an }+T(an)&1+

1�6

:
m

k=1

|Pk |"L�[&ar (n+1), ar (n+1)]

. (2.11)

Proof. Parts (a)�(c) are found in Lemma 2.3 of [5], (2.10) follows as
in Lemma 1 of [14], and then (2.11) follows using (2.10) and the method
of Lemma 3.3 in [3]. K

Our next lemma establishes how ``close'' y0 is to an .

Lemma 2.3. Let W # E, n�N0 , and y0 be as in (1.14). Then, we have

an (1&B$n)� y0�an (2.12)

for some B>0 independent of n and L.
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Proof. By (2.5), (2.6), and the definition of $n (see (1.15)), there exist
Cj>0, j=1, 2 such that

C1a&1�2
n (nT(an))1�6�| pn ( y0)| W( y0)

�C2a&1�2
n min {}1&

y0

an }
&1�4

, $&1�4
n = . (2.13)

Then, this gives

max {}1&
y0

an }, $n=�C3 $n . (2.14)

Now by the definition of y0 , we have clearly that y0�an . Moreover, if
y0�an (1&$n) then (2.12) is satisfied with B=1. Suppose then, that

0� y0<an (1&$n).

Then (2.14) becomes

\1&
y0

an+�C4 $n

which again implies (2.12) with B=C4 . K

Now, fix B in (2.12).

Lemma 2.4. Let W # E.

(a) Uniformly for n�1, 1� j�n, and x # R,

|lj, n (Un)(x)|t
a3�2

n

n
9n W(x j, n) \1&

|xj, n |
an

+L$n+
1�4

} pn (x)
x&x j, n } . (2.15)

(b) There exists C>0 such that uniformly for n�1, 1� j�n, and
x # R,

|lj, n (Un)(x) W(x)| W&1 (xj, n)�C. (2.16)

(c) Uniformly for n�1 and 1� j�n,

a3�2
n

n
9n (xj, n) \1&

|xj, n |
an

+L$n +
1�2

| p$n W | (xj, n)

ta1�2
n | pn&1W | (xj, n)t \1&

|x j, n |
an

+L$n+
1�4

. (2.17)
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(d) For n�1, 1� j�n, and |x|�an , there exists C>0 such that

| pn (x)| W(x)�C
n

a3�2
n _9n (x) 9n (xj, n) \1&

|xj, n |
an

+L$n+
1�2

&
&1�2

_|x&xj, n |. (2.18)

Proof. Parts (a), (b), and (c) are (2.13), (2.14),and (2.11) resp. in [5].
Part (d) is (10.28) in [8]. K

Lemma 2.5. Let W # E and let ln+1, n+2 (Vn+2) and ln+2, n+2 (Vn+2) be
respectively the fundamental polynomials of degree �n+1 at the points y0

and &y0 . Then there exists C>0 such for all x # R.

|ln+1, n+2 (Vn+2)| (x) W(x) W&1 ( y0)�C (2.19)

and

|ln+2, n+2 (Vn+2)| (x) W(x) W &1 (&y0)�C. (2.20)

Proof. We prove (2.19). Relation (2.20) is similar. First observe that

ln+1, n+2 (Vn+2)(x)=
pn (x)( y0+x)

2y0pn ( y0)
# Pn+1 (2.21)

and satisfies

ln+1, n+2 (Vn+2)( y0)=1, (2.22)

ln+1, n+2 (Vn+2)(xj, n)=0, 1� j�n (2.23)

and

ln+1, n+2 (Vn+2)(&y0)=0.

Observe that by (2.10), we may assume that |x|�an+1 . Then by (2.6),
(2.9), the definition of y0 , (2.12), and (2.21),

|ln+1, n+2 (Vn+2) W(x) W &1 ( y0)|

�C
W(x) | pn (x)| | y0+x|

2y0 | pn ( y0)| W( y0)

�C1

a&1�2
n n1�6T(an)1�6 an

2an (1&B$n) a&1�2
n n1�6T(an)1�6�C2 . K

We next need a lemma which gives an estimate of the distance between
y0 and |xj, n | , 1� j�n.
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Lemma 2.6. Let W # E. Then for n�N0 and uniformly for 1� j�n, we
have

| y0&|xj, n | |tan \}1&
|xj, n |

an }+L$n+ . (2.24)

Proof. We begin with our lower bound. We consider two cases:

Case 1. |xj, n |�an (1&2L$n). Note that here

1&
|xj, n |

an
+L$n�3L$n .

Moreover (2.1) implies

}1&
|x j, n |

an }+L$n�3L$n (2.25)

if L is large enough.
Next observe that by (2.12) and the definition of 9n (see (1.16)), we have

that

�1�2
n ( y0)�(T(an)1�2 $1�4

n (B+L)1�4)&1. (2.26)

Now as Q and | pn | are both even functions, the definition of 9n , (1.16),
(2.6), (2.18), (2.25), and (2.26) yield

| y0&|xj, n | |�C1 an $n

�C2 an \}1&
|xj, n |

an }+L$n +
uniformly for 1� j�n.

Case 2. |xj, n |�an (1&2L$n). Observe that if L is large enough,

| y0&|xj, n | |�an \}1&
|xj, n |

an }+L$n+&(an (1+L$n)& y0). (2.27)

Now by (2.12),

(an (1+L$n)& y0)�
an

2 _1&
|xj, n |

an
+L$n & (2.28)
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if

1&
|xj, n |

an
�2$n _B+

L
2& . (2.29)

But then it is easy to see that |xj, n |�an (1&2L$n) implies (2.29) if L is
large enough and so we have (2.28). Inequality (2.27) then becomes

| y0&|xj, n | |�
an

2 \}1&
|xj, n |

an }+L$n+
and we have our lower bound for this case as well.

The upper bound is easier. We again distinguish two cases:

Case 1. |xj, n |�an . Here, if L is large enough, we have by (2.12),

| y0&|x j, n | |�L an $n+an \1&
|xj, n |

an +
=an \}1&

|x j, n |
an }+L$n+ .

Case 2. an�|x j, n |�an (1+A$n). Here if L is large enough, we have by
(2.1) and (2.12),

| y0&|xj, n | |�B an $n+x1, n&an

�an $n (B+A)�an _}1&
|x j, n |

an }+L$n & .

The lemma is proved. K
Let us put

2xj, n :=xj, n&xj+1, n , 1� j�n.

We prove:

Lemma 2.7. Let W # E, n�N0 , r>1, and |x|�arn . Then there exists
Cj>0, j=1, 2 such that for 1� j�n,

(a) W(x) lj, n (Un)(x) W &1 (xj, n)

�C1 \}1&
|x j, n |

an }+L$n+
1�4

\}1&
|x|
an }+L$n+

&1�4 2xj, n

|x&xj, n |
,

(2.30)

248 S. B. DAMELIN



File: DISTL2 318415 . By:AK . Date:02:07:98 . Time:13:18 LOP8M. V8.B. Page 01:01
Codes: 2231 Signs: 816 . Length: 45 pic 0 pts, 190 mm

(b) W(x) lj, n+2 (Vn+2)(x) W &1 (x j, n)

�C1 \}1&
|x j, n |

an }+L$n+
&3�4

\}1&
|x|
an }+L$n+

3�4 2xj, n

|x&xj, n |
.

(2.31)

Proof. We begin first with (2.30). First note that (2.5) and (2.6) show
that uniformly for n and x,

| pn (x)| W(x)�C1a&1�2
n \}1&

|xj, n |
an }+L$n+

&1�4

. (2.32)

Then by (2.32),

W(x) lj, n (Un)(x) W&1 (xj, n)

=
W(x) | pn (x)| W &1 (xj, n)

| p$n (x j, n)| |x&x j, n |

�C1

a&1�2
n ( |1&(|x|�an)|+L$n)&1�4 W&1 (xj, n)

| p$n (xj, n)| |x&xj, n |

�C2 \}1&
|xj, n |

an }+L$n+
1�4

\}1&
|x|
an }+L$n+

&1�4 2xj, n

|x&xj, n |
.

by (2.2) and (2.17). So we have (2.30).
We now proceed with (2.31).
First observe that for 1� j�n,

lj, n+2 (Vn+2)(x)=\ y2
0&x2

y2
0&x2

j, n+ l j, n (Un)(x). (2.33)

Next, we claim that

| y0&x|�C3 an \}1&
|x|
an }+L$n+ . (2.34)

We consider two cases:

Case 1. |x|�an . Here much as in the proof of Lemma 2.6,

| y0&|x| |�Ban $n+an \1&
|x|
an +

�C3 an \}1&
|x|
an }+L$n+

if L is large enough.
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Case 2. an<|x|�arn . Here, using (2.9),

|x|&an�arn&an

�C4 anT(an)&1

�C5 an \}1&
|x|
an }+

so that

| y0&|x| |�|an& y0 |+|an&|x| |

�C6 an \}1&
|x|
an }+L$n+

so (2.34) is established. Then (2.24), (2.30), (2.33), and (2.34) yield
(2.31). K

3. THE PROOFS OF OUR UPPER BOUNDS

In this section we establish our upper bounds for (1.17) and (1.24).
Throughout we assume that W # E, x # R is fixed, and xk(x), n is that zero
of pn closest to x.

We need two lemmas

Lemma 3.1. There exist M and $>0 with the following properties:

(a) If |x| # [0, an (1+(L�2)$n)] then

(i) [ j : | j&k(x)|�2]�{ j : |x&x j, n |�
Man

n
9n (x)= . (3.1)

(ii) |x&xk(x)\k, n |�$
an

n
9n (x), k=0, 1.

(iii) |x&xk(x)\3, n |>
Man

n
9n (x). (3.2)

(b) If |x| # [an (1+(L�2)$n), �),

|x&xj, n |>
Man

n
9n (x) (3.3)

for all 1� j�n.
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Proof. Suppose first that x # [0, an (1+(L�2)$n)]. Observe that if
t # [xj+1, n , xj, n], 1� j�n, we have

} 1&(|t|�an)+L$n

1&(|x j, n |�an)+L$n
&1 }� 1

an }
x j, n&t

1&(|xj, n |�an)+L$n }
�

1
an }

xj, n&xj+1, n

1&(|xj, n |�an)+L$n }�
C9n (x j, n)

n(L&A) $n
�

1
2

(3.4)

by (1.16), (2.1), and (2.2) if L is large enough.
We conclude using (1.16) and (3.4) that

9n (t)t9n (xj, n) uniformly for j, n and t # [xj+1, n , xj, n].

(3.5)

Now by definition of xk(x), n , we must have x # [xk(x)+1, n , xk(x), n] or
x # [xk(x), n , xk(x)&1, n] at least when x � x1, n . Using (2.3) and (2.4)
if necessary, we may assume without loss of generality that x #
[xk(x)+1, n , xk(x), n].

Then by (2.2) and (3.5),

|x&xk(x)\2, n |�|xk(x)&2, n&xk(x)+2, n |

�C
an

n
9n (xk(x), n)

t
an

n
9n (x). (3.6)

Using (3.6) and (2.2) we see that it is possible to choose M such that
(3.1) holds at least when x�x1, n . Suppose x�x1, n . We may then suppose
that L is chosen large enough such that x3, n�an (1&(L�4)$n) and then

|x&x3, n |�an \1+
L
2

$n+&an \1&
L
4

$n+
tan $n t

an

n
9n (x)

using (1.15) and (1.16).
Thus also in this case, it is possible to choose M such that (3.1) holds.

Parts (ii) and (iii) of the lemma then follow similarly. K

Now fix M and $ in Lemma 3.1 and put

Jn :=[xn, n , x1, n]"[xk(x)+2 , xk(x)&2] (3.7)
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if |x| # [0, an (1+(L�2)$n)] and

Jn :=[xn, n , x1, n] (3.8)

if |x| # [an (1+(L�2)$n , �).
We modify the definition in (3.7) accordingly if |x|�x1, n .
We have the following estimate.

Lemma 3.2. Uniformly for 1� j�n and n�N0 ,

:
n

j=1
j � [k(x)+2, k(x)&2]

2xj, n

|x&x j, n | :={
O(a1&:

n ), 0<:<1

= (3.9)
O(log n), :=1

O \ n
an9n (x)+

:&1

, :>1.

Proof. First note that if |x|�an (1+(L�2)$n), we have uniformly for
n�N0 and 1� j�n,

|x&t|t |x&xj, n |, t # [xj+1, n , xj, n], j � [k(x)+2, k(x)&2]. (3.10)

This follows much as in [3] using Lemma 3.1(a) and (2.2) since,

} x&t
x&x j, n

&1}= } t&xj, n

x&x j, n }
� }x j, n&x j+1, n

x&xj, n }�C

and similarly we can bound

x&xj, n

x&t
.

Then, from (2.2) and the definition of Jn in (3.7), we obtain

:
n

j=1
j � [k(x)+2, k(x)&2]

2x j, n

|x&x j, n | :=O \| |t|�an(1+A$n)
t # Jn

dt
|x&t|:+

={
O(a1&:

n ), 0<:<1

= .
O(log n), :=1

O \ n
an 9n (x)+:&1, :>1

The case for |x|�an (1+(L�2)$n) is similar but easier. K
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We may now proceed with the proofs of our upper bounds. We begin
with:

Proof of the Upper Bound in (1.17). From (2.30) we have for 1� j�n,

W(x) lj, n (Un)(x) W &1 (xj, n)

�C1 \ |1&( |xj, n |�an)|+L$n

|1&( |x|�an)|+L$n +
1�4 2xj, n

|x&xj, n |
.

Thus, by (1.6) and using the above, we have

4n (W, Un)(x)= :
n

j=1

W(x) |l j, n (Un)(x)| W &1 (x j, n)

� :
j # [k(x)+2, k(x)&2]

W(x) |l j, n (Un)(x)| W&1 (xj, n)

+C1 :
j � [k(x)+2, k(x)&2]

\ |1&( |xj, n |�an)|+L$n

|1&( |x|�an)|+L$n +
1�4

_
2xj, n

|x&xj, n |
. (3.11)

First observe that we may write

|1&(|xj, n |�an)|+L$n

|1&( |x|�an)|+L$n
�1+

|x&xj, n |
an ( |1&(|x|�an)|+L$n)

. (3.12)

Next we observe that using (2.10), we may assume without loss of gener-
ality that |x|�an . Then (3.12) becomes using the definition of $n (see (1.15))

\ |1&(|xj, n |�an)|+L$n

|1&( |x|�an)|+L$n +
1�4

=O(1)+O \n1�6T(an)1�6 |x&xj, n | 1�4

a1�4
n + . (3.13)

Thus using (2.16), (3.9), and (3.13), we now rewrite (3.11) as

4n (W, Un)(x)�C2 :
j # [k(x)+2, k(x)&2]

1

+O \ :
j � [k(x)+2, k(x)&2]

n1�6T(an)1�6 2xj, n

a1�4
n |x&xj, n | 3�4 +

+O \ :
j � [k(x)+2, k(x)&2]

2xj, n

|x&xj, n |+
=O(1)+O(log n)+O(n1�6T(an)1�6)

=O(n1�6T(an)1�6) (3.14)
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and so we have taking sup's,

&4n (W, Un)&L�(R)=O(n1�6T(an)1�6) (3.15)

as required. K

We now present,

Proof of Our Upper Bound in (1.24). Firstly, from (2.31) we have for
1� j�n,

W(x) lj, n+2 (Vn+2)(x) W &1 (x j, n)

�C1 \ |1&( |xj, n |�an)|+L$n

|1&( |x|�an)|+L$n +
&3�4 2xj, n

|x&xj, n |
. (3.16)

Thus by (1.6), (2.19), (2.20), and (3.16), we have

4n+2 (W, Vn+2)(x)

�O(1)+ :
n

j=1
j # [k(x)+2, k(x)&2]

W(x) |lj, n+2 (Vn+2)(x)| W &1 (xj, n)

+C2 :
n

j=1
j � [k(x)+2, k(x)&2]

\ |1&( |xj, n |�an)|+L$n

|1&( |x|�an)|+L$n +
&3�4 2xj, n

|x&xj, n |

=O(1)+:
1

(x)+:
2

(x), (3.17)

where

:
1

(x) := :
n

j=1
j # [k(x)+2, k(x)&2]

W(x) |lj, n+2 (Vn+2)(x)| W&1 (xj, n)

and

:
2

(x) :=C2 :
n

j=1
j � [k(x)+2, k(x)&2]

\ |1&(|xj, n |�an)|+L$n

|1&(|x|�an)|+L$n +
&3�4 2xj, n

|x&x j, n |
.

We observe that using (2.11), we may assume without loss of generality
that |x|�an+1 . We begin with the estimation of �1 (x).
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Note, that by (2.24), (2.33), and (2.34),

:
1

(x)= :
n

j=1
j � [k(x)+2, k(x)&2]

} y2
0&x2

y2
0&x2

j, n } W(x) |lj, n (Un)(x)| W&1 (xj, n)

=O \ :
n

j=1
j # [k(x)+2, k(x)&2]

\ |1&( |x|�an)|+L$n

|1&(|xj, n |�an)|+L$n+
_W(x) |lj, n (Un)(x)| W&1 (xj, n)+ . (3.18)

Next, using (2.1), (2.2), and (2.4), it is easy to see that if L is large
enough, we have uniformly for x and j # [k(x)+2, k(x)&2],

\ |1&(|x|�an)|+L$n

|1&(|xj, n |�an)|+L$n+t1

so that

:
1

(x)=O \ :
n

j=1
j # [k(x)+2, k(x)&2]

W(x) |l j, n (Un)(x)| W&1 (xj, n)+
=O(1) (3.19)

by (2.16).
We now turn to the delicate estimation of �2 (x).
Much as in (3.12), we observe that for 1� j�n we have

\ |1&( |x|�an)|+L$n

|1&(|xj, n |�an)|+L$n+
3�4

�1+
|x&xj, n |3�4

a3�4
n ( |1&(|xj, n |�an)|+L$n)3�4 . (3.20)

Then, using (3.20), we may write

:
2

(x)=O \ :
j # S

2xj, n

|x&xj, n |
+ :

j # S

2xj, n

a3�4
n |x&xj, n |1�4 ( |1&(|x j, n |�an)|+L$n)3�4+ ,

where

S=[ j : 1� j�n, j � [k(x)+2, k(x)&2]],

=O(log n)+O \ :
j # S

2xj, n

|x&xj, n |1�4 ( |an&|xj, n | |+anL$n)3�4+
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by (3.9)

=O(log n)+O \ :

|xj , n |�an(1&$n)
j # S

2xj, n

|x&x j, n | 1�4 (an&|xj, n | )3�4+
+O \ :

|xj , n |>an(1&$n)
j # S

2xj, nn1�2T(an)1�2

|x&xj, n |1�4 a3�4
n + . (3.21)

Next, using the Geometric and Arithmetic mean inequality and (3.9)
again, we may continue (3.21) as

:
2

(x)=O(log n)

+O \ :

|xj , n |�an(1&$n)
j # S

2xj, n

|x&x j, n |++O \ :

|xj , n |�an(1&$n)
j # S

2xj, n

an&|x j, n |+
+O \n1�2T(an)1�2

a3�4
n

:

|xj , n |>an(1&$n)
j # S

2xj, n

|x&x j, n | 1�4+
=O(log n)+O \ :

|xj , n |>an(1&$n)
j # S

1+ , (3.22)

where in the last line we used (1.15), (1.16), (2.1), and (2.2).
Now it remains to observe that the spacing (2.2) and (1.16) imply that

there exist at most a finite number of j such that |xj, n |>an (1&$n). Then
(3.22) yields

:
2

(x)=O(log n)+O(1)=O(log n). (3.23)

Combining (3.23) with (3.19) and taking sup's yield

&4n+2 (W, Vn+2)&L�(R)=O(log n) (3.24)

as required. K

4. THE PROOFS OF THEOREMS 1.2 AND 1.4 AND
COROLLARIES 1.3 AND 1.5

In this section we present the proofs of our lower bounds in (1.17) and
(1.24). We deduce Theorems 1.2 and 1.4 and Corollaries 1.3 and 1.5.
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We begin with,

Proof of Our Lower Bound in (1.17). Write

4n (W, Un)(x)=W(x) | pn (x)| :
n

j=1

p$n (xj, n)&1 W(xj, n)&1 |x&x j, n | &1. (4.1)

In particular, (4.1) becomes using (1.16), (2.9), (2.12), and (2.17),

4n (W, Un)( y0)�C1 :
0�xj, n�an�2

a&1�2
n n1�6T(an)1�6

a&1�2
n (1&(|x j, n |�an)+L$n)&1�4 n

�C2 n&5�6T(an)1�6 :
0�xj, n�an�2

1. (4.2)

Now it remains to observe that the spacing (2.2) and (1.16) imply that
there exist �C3 n j such that x j, n # [0, an �2]. Then (4.2) becomes

4n (W, Un)( y0)�C4 n1�6T(an)1�6

so that

&4n (W, Un)&L�(R)�4n (W, Un)( y0)�C5n1�6T(an)1�6, (4.3)

as required. K

We now turn to the proof of our lower bound (1.24). Here a choice of
x= y0 is not sufficient to achieve our lower bound and we need to proceed
more carefully. Indeed, we will show that the point we need sits ``far'' away
from an .

Proof of Our Lower Bound for (1.24). First we claim that there exists
y # R satisfying | y|�:an , for some 0<:<1 and uniformly for n�1,

a1�2
n pnW( y)t1. (4.4)

To see this, observe first that if 0<:<1 is given, then by (1.16), (2.2),
and (2.9), there exits C1n> j, 1� j�n+1 such that |xj, n+1 | # [0, :an].
Now choose y= y1=xk, n+1 for some 1�k�n+1 such that | y1 | #
[0, :an]. Then (2.9) and (2.17) give

a1�2
n | pnW| ( y1)t1

and (4.4) is established. Fix y1 as above.
We now proceed as follows. Since y1<cy0 , for some 0<c<1, we have

by (1.29), (2.12), (2.33), and (4.4),
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4n+2 (W, Vn+2)( y1)� :
n

j=1

W( y1) W(x j, n)&1 \y2
0& y2

1

y2
0 + l j, n (Un)( y1)

�C1 :
n

j=1

W( y1) W(x j, n)&1 lj, n (Un)( y1)

�C24n (W, Un)( y1)�C3 a1�2
n | pnW| ( y1) log n

�C4 log n.

Thus,

&4n+2 (W, Vn+2)&L�(R)�C4 log n (4.5)

and we have proved our lower bound. K

We may now present:

Proof of Theorem 1.2. This follows immediately from (3.15) and
(4.3). K

Proof of Corollary 1.3. Relation (1.18) follows from the representation
(1.6), (1.17), and Theorem 1.2 of [4]. Relations (1.21) and (1.22) follow
from (1.18), Corollary 1.7 of [3], and (2.7). K

Proof of Theorem 1.4. This follows immediately from (3.24) and
(4.5). K

Proof of Corollary 1.5. Relation (1.25) follows from the representation
(1.6), (1.24), and Theorem 1.2 of [4]. Relations (1.26) and (1.27) follow
from (1.25), Corollary 1.7 of [3], and (2.7). K

5. POINTWISE ESTIMATES OF 4n(W, Un)

In this section, we sketch briefly the proof of Theorem 1.6.
Fix x, xk(x), n , M, $, and Jn as in Section 3.

Step 1. Set

S1 :={ j : � j�n, |x&xj, n |�
$an

n
9n (x)= ,

S2 :={ j : � j�n,
$an

n
9n (x)�|x&xj, n |�

Man

n
9n (x)= ,
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and

S3 :={ j : 1� j�n, |x&xj, n |>
Man

n
9n (x)= .

Now write

4n (Un , W)(x) := :
j # S1

(x)+ :
j # S2

(x)+ :
j # S3

(x).

Step 2. Estimation of �j # S1
(x) and �j # S2

(x). First observe that it suf-
fices to estimate the above sums for x # [0, an (1+(L�2)$n)] for they are
identically zero outside this range of x. Moreover, recall that we may
assume by symmetry that x>0.

Then the following holds:

Lemma 5.1. Let W # E.

(a) There exists C1�0 such that uniformly for n�1 and
x # [0, an (1+(L�2)$n)],

0� :
j # S1

(x)�C1 . (5.1)

Moreover, uniformly for n�1 and x # [0, x1, n],

:
j # S1

(x)t1. (5.2)

(b) Uniformly for x # [0, an (1+(L�2)$n)] and n�N0 ,

:
j # S2

(x)t- an | pnW| (x) \1&
|x|
an

+L$n+
1�4

. (5.3)

Proof. First note that (2.16) gives

:
j # S1

(x)=W(x) :
j # S1

|l j, n (Un)(x)| W&1 (xj, n)

�C :
j # S1

1�C1

for some C1>0 independent of x and n as the above sum is finite.
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For the lower sum, we use the weighted Erdo� s�Turan inequality (see, for
example, [5])

lj, n (Un)(x) W(x) W&1 (xj, n)+lj+1, n (Un)(x) W(x) W&1 (x j+1, n)�1 (5.4)

valid for n�2, 1� j�n&1, and x # [xj+1, n , xj, n].
If x�x1, n , we may assume without loss of generality that x #

[xk(x)+1, n , xk(x), n]. Then (5.4) gives

:
j # S1

(x)�W(x) :
k(x)+1

j=k(x)

lj, n (Un)(x) W&1 (xj, n)�C2 .

Thus (5.1) and (5.2) follow.
It remains to show (5.3). Here we first observe that by (2.2) we have

uniformly for j # S2 ,

an

n
9n (xj, n)t |xj, n&x j\1, n |t |x&xj, n |. (5.5)

Then (2.15) and (5.5) easily yield.

:
j # S2

(x)t- an | pnW| (x) \1&
|x|
an

+L$n+
1�4

as required. K

Step 3. Preliminary Estimation of �j # S3
(x).

Lemma 5.2. Let W # E.

(a) If |x|�2an , we have uniformly for x and n�N0 ,

:
j # S3

(x)t- an pnW(x) | |t|�an(1+A$n)
t # Jn

(1&(|t|�an)+L$n)1�4

|x&t|
dt. (5.6)

(b) If |x|�2an , we have uniformly for x and n�N0 ,

:
j # S3

(x)t
- anpnW(x)

|x| | |t|�an(1+A$n)
t # Jn

\1&
|t|
an

+L$n+
1�4

dt. (5.7)

Proof. We consider the case x # [0, an (1+(L�2)$n)] and x�x1, n . The
other cases are similar.
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By (2.2) and (2.15),

:
j # S3

(x)t- an pnW(x)

_ :
j # [1, n]"[k(x)+2, k(x)&2]

|
xj, n

xj+1, n

(1&(|xj, n |�an+L$n)1�4

|x&x j, n |
dt.

(5.8)

Then much as in (3.10), (5.8) readily yields (5.6) for this case. K

Step 4. Estimation of J :=� |t|�an(1+A$n), t # Jn
(1&|t|�an+L$n)1�4 dt. We

now record the following technical estimate for J:

Lemma 5.3. Let W # E and suppose that x # [0, an (1+(L�2)$n)]. Then
uniformly for x and n�N0 ,

Jt\1&
|x|
an

+L$n+
1�4

log \n(1&|x|�an+L$n)
9n (x) ++1. (5.9)

Step 5. Proof of Theorem 1.6. Observe that for |x|�an (1+(L�2)$n),

log \n(1&|x|�an+L$n)
9n (x) +>0 if L is large enough.

Then (5.1), (5.2), (5.3), and (5.9) yield the result for this case. Theorem
1.6(b) and (c) are similar but easier. K
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